Suppr超能文献

贝叶斯法和费米反卷积法在心肌血流量定量分析中的直接比较及临床验证

Direct Comparison of Bayesian and Fermi Deconvolution Approaches for Myocardial Blood Flow Quantification: and Clinical Validations.

作者信息

Daviller Clément, Boutelier Timothé, Giri Shivraman, Ratiney Hélène, Jolly Marie-Pierre, Vallée Jean-Paul, Croisille Pierre, Viallon Magalie

机构信息

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294, Lyon, France.

Department of Research and Innovation, Olea Medical, La Ciotat, France.

出版信息

Front Physiol. 2021 Apr 12;12:483714. doi: 10.3389/fphys.2021.483714. eCollection 2021.

Abstract

Cardiac magnetic resonance myocardial perfusion imaging can detect coronary artery disease and is an alternative to single-photon emission computed tomography or positron emission tomography. However, the complex, non-linear MR signal and the lack of robust quantification of myocardial blood flow have hindered its widespread clinical application thus far. Recently, a new Bayesian approach was developed for brain imaging and evaluation of perfusion indexes (Kudo et al., 2014). In addition to providing accurate perfusion measurements, this probabilistic approach appears more robust than previous approaches, particularly due to its insensitivity to bolus arrival delays. We assessed the performance of this approach against a well-known and commonly deployed model-independent method based on the Fermi function for cardiac magnetic resonance myocardial perfusion imaging. The methods were first evaluated for accuracy and precision using a digital phantom to test them against the ground truth; next, they were applied in a group of coronary artery disease patients. The Bayesian method can be considered an appropriate model-independent method with which to estimate myocardial blood flow and delays. The digital phantom comprised a set of synthetic time-concentration curve combinations generated with a 2-compartment exchange model and a realistic combination of perfusion indexes, arterial input dynamics, noise and delays collected from the clinical dataset. The myocardial blood flow values estimated with the two methods showed an excellent correlation coefficient ( > 0.9) under all noise and delay conditions. The Bayesian approach showed excellent robustness to bolus arrival delays, with a similar performance to Fermi modeling when delays were considered. Delays were better estimated with the Bayesian approach than with Fermi modeling. An analysis of coronary artery disease patients revealed that the Bayesian approach had an excellent ability to distinguish between abnormal and normal myocardium. The Bayesian approach was able to discriminate not only flows but also delays with increased sensitivity by offering a clearly enlarged range of distribution for the physiologic parameters.

摘要

心脏磁共振心肌灌注成像能够检测冠状动脉疾病,是单光子发射计算机断层扫描或正电子发射断层扫描的一种替代方法。然而,复杂的非线性磁共振信号以及心肌血流缺乏可靠的定量分析,迄今为止阻碍了其在临床上的广泛应用。最近,一种新的贝叶斯方法被开发用于脑成像和灌注指数评估(Kudo等人,2014年)。除了提供准确的灌注测量外,这种概率方法似乎比以前的方法更稳健,特别是由于它对团注到达延迟不敏感。我们针对基于费米函数的、用于心脏磁共振心肌灌注成像的一种知名且常用的与模型无关的方法,评估了这种方法的性能。首先使用数字体模评估这些方法的准确性和精密度,以根据真实情况对它们进行测试;接下来,将它们应用于一组冠状动脉疾病患者。贝叶斯方法可被视为一种合适的与模型无关的方法,用于估计心肌血流和延迟。数字体模由一组使用双室交换模型生成的合成时间 - 浓度曲线组合以及从临床数据集中收集的灌注指数、动脉输入动态、噪声和延迟的实际组合组成。在所有噪声和延迟条件下,用这两种方法估计的心肌血流值显示出极好的相关系数(>0.9)。贝叶斯方法对团注到达延迟表现出极好的稳健性,在考虑延迟时与费米模型具有相似的性能。用贝叶斯方法估计延迟比用费米模型更好。对冠状动脉疾病患者的分析表明,贝叶斯方法具有出色的区分异常和正常心肌的能力。贝叶斯方法不仅能够区分血流,还能够区分延迟,通过为生理参数提供明显扩大的分布范围,提高了敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/103b/8072361/afe373b9eb89/fphys-12-483714-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验