Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France.
Acta Biotheor. 2020 Mar;68(1):87-117. doi: 10.1007/s10441-019-09355-x. Epub 2019 Aug 12.
Most studies of motifs of biological regulatory networks focus on the analysis of asymptotical behaviours (attractors, and even often only stable states), but transient properties are rarely addressed. In the line of our previous study devoted to isolated circuits (Remy et al. in Bioinformatics (Oxford, England) 19(Suppl. 2):172-178, 2003), we consider chorded circuits, that are motifs made of an elementary positive or negative circuit with a chord, possibly a self-loop. We provide detailed descriptions of the boolean dynamics of chorded circuits versus isolated circuits, under the synchronous and asynchronous updating schemes within the logical formalism. To this end, we address the description of the trajectories in the dynamics of isolated circuits with coding techniques and adapt them for chorded circuits. The use of the logical modeling gives access to mathematical tools (group actions, analysis of recurrent sequences, coding of trajectories, specific abacus...) allowing complete analytical analysis of basic yet important motifs. In particular, we show that whatever the chosen updating rule, the dynamics depends on a small number of parameters.
大多数关于生物调控网络基序的研究都集中在分析渐近行为(吸引子,甚至通常仅为稳定状态),但很少涉及瞬态特性。在我们之前专注于孤立电路的研究中(Remy 等人,《生物信息学》(牛津,英国)19(增刊 2):172-178,2003),我们考虑了和弦电路,这是由带有和弦的基本正或负电路组成的基序,可能还有自环。我们在逻辑形式主义内的同步和异步更新方案下,针对和弦电路和孤立电路,详细描述了它们的布尔动态。为此,我们使用编码技术描述了孤立电路动力学中的轨迹,并将其应用于和弦电路。逻辑建模的使用可以访问数学工具(群作用、递归序列分析、轨迹编码、特殊算盘……),从而可以对基本但重要的基序进行完整的分析。特别是,我们表明无论选择哪种更新规则,动力学都取决于少数几个参数。