Pattern Recognition Lab, Friedich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedich-Alexander Universität Erlangen-Nürnberg, 91052, Erlangen, Germany.
Med Phys. 2019 Oct;46(10):4654-4665. doi: 10.1002/mp.13758. Epub 2019 Sep 6.
Radiation doses accumulated during very complicated image-guided x-ray procedures have the potential to cause stochastic, but also deterministic effects, such as skin rashes or even hair loss. To monitor and reduce radiation-related risks to patients' skin, x-ray imaging devices are equipped with online air kerma monitoring components. Traditionally, such measurements have been used to estimate skin entrance dose by (a) estimating air kerma at the interventional reference point (IRP), (b) forward projecting the dose distribution, and (c) considering a backscatter factor among other correction factors. Unfortunately, the complicated interaction between incident x-ray photons, secondary electrons, and skin tissue cannot be properly accounted for by assuming a linear relationship between forward projected air kerma and a backscatter factor. Gold standard skin dose models are therefore determined using Monte Carlo (MC) techniques. However, MC simulations are computationally complex in general and possible acceleration mainly depends on the employed hardware and variance reduction techniques. To obtain reliable and fast dose estimates, we propose to combine MC-based simulations with learning-based methods.
The basic idea of our method is to approximate the radiation physics to calculate a first-order exposure estimate quickly. This initial estimate is then refined using prior knowledge derived from MC simulations. To this end, the primary photon propagation inside a voxelized patient model is estimated using a less accurate but fast photon ray casting (RC) simulation based on the Beer-Lambert law. The results of the RC simulation are then fed into a convolutional neural network (CNN), which maps the propagation of primary photons to the dose deposition inside the patient model. Additionally, the patient model itself including anatomy and material properties, such as mass density and mass energy-absorption coefficients, are fed into the CNN as well. The CNN is trained using smoothed results of MC simulations as output and RC simulations of identical imaging settings and patient models as input.
In total, 163 MC and associated RC simulations are carried out for the head, thorax, abdomen, and pelvis in three different voxel phantoms. We used or primarily emitted photons sampled from a 125 kV peak voltage spectrum, respectively. Edge-preserving smoothing (EPS) is applied to reduce (a) general stochastic uncertainties and (b) stochastic uncertainty concerning MC simulations of less primary photons. The CNN is trained using seven imaging settings of the abdomen in a single phantom. Testing its performance on the remaining datasets, the CNN is capable of estimating skin dose with an error of below 10% for the majority of test cases.
The combination of deep neural networks and MC simulation of particle physics has the potential to decrease the computational complexity of accurate skin dose estimation. The proposed approach can provide dose distributions in under one second when running on high-end hardware. On lower cost hardware, it took up to 2 min to arrive at the same result. This makes our approach applicable in high-end environments as well as in budget solutions. Furthermore, the number of primary photons only affects the training time, while the execution time is independent of the number of primary photons.
在非常复杂的图像引导 X 射线程序期间累积的辐射剂量有可能导致随机效应,但也有可能导致确定性效应,例如皮疹甚至脱发。为了监测和降低患者皮肤的辐射相关风险,X 射线成像设备配备了在线空气比释动能监测组件。传统上,通过以下方法来估计皮肤入射剂量:(a)估算介入参考点(IRP)处的空气比释动能,(b)正向投影剂量分布,以及 (c)考虑反向散射因子等校正因子。不幸的是,入射 X 射线光子、次级电子和皮肤组织之间复杂的相互作用不能通过假设正向投影空气比释动能与反向散射因子之间的线性关系来正确考虑。因此,金标准皮肤剂量模型是使用蒙特卡罗(MC)技术确定的。然而,MC 模拟通常在计算上很复杂,可能的加速主要取决于所使用的硬件和方差减少技术。为了获得可靠和快速的剂量估计,我们建议将基于 MC 的模拟与基于学习的方法相结合。
我们方法的基本思想是快速计算辐射物理以快速估算一级暴露量。然后,使用从 MC 模拟中得出的先验知识来改进此初始估算值。为此,基于 Beer-Lambert 定律,使用不太准确但快速的光子射线投射(RC)模拟来估算体素化患者模型内的初级光子传播。RC 模拟的结果然后被馈送到卷积神经网络(CNN)中,该网络将初级光子的传播映射到患者模型内的剂量沉积上。此外,患者模型本身包括解剖结构和材料特性,例如质量密度和质量能量吸收系数,也被馈送到 CNN 中。CNN 使用 MC 模拟的平滑结果作为输出,并使用相同的成像设置和患者模型的 RC 模拟作为输入进行训练。
总共对三个不同体素模型中的头部、胸部、腹部和骨盆进行了 163 次 MC 模拟和相关的 RC 模拟。我们分别使用 或 主要发射光子,采样自 125kV 峰值电压谱。边缘保持平滑(EPS)用于减少(a)一般随机不确定性和(b)MC 模拟中较少初级光子的随机不确定性。使用单个模型中的七个腹部成像设置对 CNN 进行训练。在其余数据集上测试其性能时,CNN 能够以低于 10%的误差估算大多数测试案例的皮肤剂量。
深度神经网络与粒子物理的 MC 模拟相结合,有可能降低准确皮肤剂量估算的计算复杂度。当在高端硬件上运行时,所提出的方法可以在不到一秒的时间内提供剂量分布。在成本较低的硬件上,需要 2 分钟才能得到相同的结果。这使得我们的方法既适用于高端环境,也适用于预算解决方案。此外,初级光子的数量仅影响训练时间,而执行时间与初级光子的数量无关。