Suppr超能文献

XDose:迈向实验性和计算性X射线剂量估计的在线交叉验证

XDose: toward online cross-validation of experimental and computational X-ray dose estimation.

作者信息

Roser Philipp, Birkhold Annette, Preuhs Alexander, Ochs Philipp, Stepina Elizaveta, Strobel Norbert, Kowarschik Markus, Fahrig Rebecca, Maier Andreas

机构信息

Pattern Recognition Lab, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.

Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg, 91052, Erlangen, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2021 Jan;16(1):1-10. doi: 10.1007/s11548-020-02298-6. Epub 2020 Dec 4.

Abstract

PURPOSE

As the spectrum of X-ray procedures has increased both for diagnostic and for interventional cases, more attention is paid to X-ray dose management. While the medical benefit to the patient outweighs the risk of radiation injuries in almost all cases, reproducible studies on organ dose values help to plan preventive measures helping both patient as well as staff. Dose studies are either carried out retrospectively, experimentally using anthropomorphic phantoms, or computationally. When performed experimentally, it is helpful to combine them with simulations validating the measurements. In this paper, we show how such a dose simulation method, carried out together with actual X-ray experiments, can be realized to obtain reliable organ dose values efficiently.

METHODS

A Monte Carlo simulation technique was developed combining down-sampling and super-resolution techniques for accelerated processing accompanying X-ray dose measurements. The target volume is down-sampled using the statistical mode first. The estimated dose distribution is then up-sampled using guided filtering and the high-resolution target volume as guidance image. Second, we present a comparison of dose estimates calculated with our Monte Carlo code experimentally obtained values for an anthropomorphic phantom using metal oxide semiconductor field effect transistor dosimeters.

RESULTS

We reconstructed high-resolution dose distributions from coarse ones (down-sampling factor 2 to 16) with error rates ranging from 1.62 % to 4.91 %. Using down-sampled target volumes further reduced the computation time by 30 % to 60 %. Comparison of measured results to simulated dose values demonstrated high agreement with an average percentage error of under [Formula: see text] for all measurement points.

CONCLUSIONS

Our results indicate that Monte Carlo methods can be accelerated hardware-independently and still yield reliable results. This facilitates empirical dose studies that make use of online Monte Carlo simulations to easily cross-validate dose estimates on-site.

摘要

目的

随着诊断和介入病例中X射线检查程序范围的增加,人们对X射线剂量管理给予了更多关注。虽然在几乎所有情况下,对患者的医疗益处都超过了辐射损伤的风险,但关于器官剂量值的可重复性研究有助于制定对患者和工作人员都有帮助的预防措施。剂量研究要么通过回顾性研究、使用人体模型进行实验,要么通过计算进行。在进行实验时,将它们与验证测量结果的模拟相结合是很有帮助的。在本文中,我们展示了如何通过与实际X射线实验一起实施这样一种剂量模拟方法,以有效地获得可靠的器官剂量值。

方法

开发了一种蒙特卡罗模拟技术,结合下采样和超分辨率技术,用于在X射线剂量测量时进行加速处理。首先使用统计模式对目标体积进行下采样。然后使用引导滤波并以高分辨率目标体积作为引导图像对估计的剂量分布进行上采样。其次,我们比较了使用我们的蒙特卡罗代码计算得到的剂量估计值与使用金属氧化物半导体场效应晶体管剂量计对人体模型实验获得的值。

结果

我们从粗略的剂量分布(下采样因子为2至16)重建了高分辨率剂量分布,错误率在1.62%至4.91%之间。使用下采样的目标体积进一步将计算时间减少了30%至60%。测量结果与模拟剂量值的比较表明,所有测量点的平均百分比误差在[公式:见原文]以下,一致性很高。

结论

我们的结果表明,蒙特卡罗方法可以在不依赖硬件的情况下加速,并且仍然能产生可靠的结果。这有助于利用在线蒙特卡罗模拟的实证剂量研究在现场轻松交叉验证剂量估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/771c/7822800/c2bfc31b77c7/11548_2020_2298_Fig5_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验