Suppr超能文献

超微孔构筑单元:通往具有高乙炔存储和分离性能的双微孔金属有机框架材料的途径

Ultramicroporous Building Units as a Path to Bi-microporous Metal-Organic Frameworks with High Acetylene Storage and Separation Performance.

作者信息

Li Yong-Peng, Wang Ying, Xue Ying-Ying, Li Hai-Peng, Zhai Quan-Guo, Li Shu-Ni, Jiang Yu-Cheng, Hu Man-Cheng, Bu Xianhui

机构信息

Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.

Department of Chemistry and Biochemistry, California State University, Long Beach, California, 90840, USA.

出版信息

Angew Chem Int Ed Engl. 2019 Sep 16;58(38):13590-13595. doi: 10.1002/anie.201908378. Epub 2019 Aug 13.

Abstract

A strategy called ultramicroporous building unit (UBU) is introduced. It allows the creation of hierarchical bi-porous features that work in tandem to enhance gas uptake capacity and separation. Smaller pores from UBUs promote selectivity, while larger inter-UBU packing pores increase uptake capacity. The effectiveness of this UBU strategy is shown with a cobalt MOF (denoted SNNU-45) in which octahedral cages with 4.5 Å pore size serve as UBUs. The C H uptake capacity at 1 atm reaches 193.0 cm  g (8.6 mmol g ) at 273 K and 134.0 cm  g (6.0 mmol g ) at 298 K. Such high uptake capacity is accompanied by a high C H /CO selectivity of up to 8.5 at 298 K. Dynamic breakthrough studies at room temperature and 1 atm show a C H /CO breakthrough time up to 79 min g , among top-performing MOFs. Grand canonical Monte Carlo simulations agree that ultrahigh C H /CO selectivity is mainly from UBU ultramicropores, while packing pores promote C H uptake capacity.

摘要

引入了一种称为超微孔构建单元(UBU)的策略。它能够创造出分级双孔结构,协同作用以提高气体吸附能力和分离效果。UBU产生的较小孔隙促进选择性,而较大的UBU间堆积孔隙则增加吸附能力。以一种钴基金属有机框架材料(命名为SNNU - 45)展示了这种UBU策略的有效性,其中孔径为4.5 Å的八面体笼作为UBU。在1个大气压下,273 K时CH₄的吸附容量达到193.0 cm³ g⁻¹(8.6 mmol g⁻¹),298 K时为134.0 cm³ g⁻¹(6.0 mmol g⁻¹)。如此高的吸附容量伴随着在298 K时高达8.5的CH₄/CO选择性。在室温及1个大气压下的动态突破研究表明,CH₄/CO的突破时间长达79 min g⁻¹,在性能最佳的金属有机框架材料中名列前茅。巨正则蒙特卡罗模拟结果表明,超高的CH₄/CO选择性主要源于UBU超微孔,而堆积孔隙则促进了CH₄的吸附容量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验