Yuan Hao, Pan Hui, Meng Xin, Zhu Chengling, Liu Siyuan, Chen Zhixin, Ma Jun, Zhu Shenmin
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
Nanotechnology. 2019 Nov 15;30(46):465702. doi: 10.1088/1361-6528/ab3aaf. Epub 2019 Aug 13.
Flexible supercapacitors based on fiber shaped electrodes exhibit great potential for practical applications in smart fabrics owing to their light weight, good flexibility, and excellent weaveability. Herein, manganosite/carbonized cellulose nanocrystal/reduced graphene oxide (MnO/CNC/rGO) ternary composite fibers were fabricated from liquid crystal spinning dopes through a continuous one-process method. The assembly of CNC and manganese oxide nanoparticles in GO aqueous dispersion not only prevents GO nanosheets from restacking, but also ensures a uniform intercalation of nanoparticles. After a chemical and thermal reduction, the carbonized CNC contributes for additional electrical double layer capacitance while the MnO for faradaic pseudocapacitance. A fiber supercapacitor was assembled by arranging two MnO/CNC/rGO ternary composite fibers coated with PVA/HPO gel electrolyte in parallel and it exhibited an energy density of 0.14 mWh cm at 4 mW cm and the maximum power density of 40 mW cm. The fiber supercapacitor also demonstrated a good cycling stability (retains 82% of its initial capacitance after 6000 cycles) and bending robustness. This assembly approach is facile and scalable. More importantly the homogeneous dispersion of the nanoparticles in the ternary composite fibers shows promise for the future spreading of wearable electronic products.
基于纤维状电极的柔性超级电容器因其重量轻、柔韧性好和可编织性优异,在智能织物的实际应用中展现出巨大潜力。在此,通过连续一步法从液晶纺丝原液制备了锰酸矿/碳化纤维素纳米晶/还原氧化石墨烯(MnO/CNC/rGO)三元复合纤维。在氧化石墨烯(GO)水分散体中,纤维素纳米晶(CNC)与氧化锰纳米颗粒的组装不仅防止了GO纳米片的重新堆叠,还确保了纳米颗粒的均匀嵌入。经过化学和热还原后,碳化的CNC提供额外的双电层电容,而MnO提供法拉第赝电容。通过将两根涂覆有聚乙烯醇/磷酸(PVA/HPO)凝胶电解质的MnO/CNC/rGO三元复合纤维并联组装成纤维超级电容器,其在4 mW/cm²时的能量密度为0.14 mWh/cm³,最大功率密度为40 mW/cm²。该纤维超级电容器还表现出良好的循环稳定性(6000次循环后保留其初始电容的82%)和弯曲稳定性。这种组装方法简便且可扩展。更重要的是,纳米颗粒在三元复合纤维中的均匀分散为可穿戴电子产品的未来推广带来了希望。