Suppr超能文献

用于预测熔融沉积成型零件表面粗糙度的决策树方法

Decision Tree Methods for Predicting Surface Roughness in Fused Deposition Modeling Parts.

作者信息

Barrios Juan M, Romero Pablo E

机构信息

Department of Mechanical Engineering, University of Cordoba, Medina Azahara Avenue, 5-14071 Cordoba, Spain.

出版信息

Materials (Basel). 2019 Aug 12;12(16):2574. doi: 10.3390/ma12162574.

Abstract

3D printing using fused deposition modeling (FDM) includes a multitude of control parameters. It is difficult to predict a priori what surface finish will be achieved when certain values are set for these parameters. The objective of this work is to compare the models generated by decision tree algorithms (C4.5, random forest, and random tree) and to analyze which makes the best prediction of the surface roughness in polyethylene terephthalate glycol (PETG) parts printed in 3D using the FDM technique. The models have been created using a dataset of 27 instances with the following attributes: layer height, extrusion temperature, print speed, print acceleration, and flow rate. In addition, a dataset has been created to evaluate the models, consisting of 15 additional instances. The models generated by the random tree algorithm achieve the best results for predicting the surface roughness in FDM parts.

摘要

使用熔融沉积建模(FDM)的3D打印包含众多控制参数。当为这些参数设置特定值时,很难预先预测所能达到的表面光洁度。这项工作的目的是比较决策树算法(C4.5、随机森林和随机树)生成的模型,并分析哪种算法能对使用FDM技术3D打印的聚对苯二甲酸乙二醇酯(PETG)零件的表面粗糙度做出最佳预测。这些模型是使用一个包含27个实例的数据集创建的,这些实例具有以下属性:层高、挤出温度、打印速度、打印加速度和流速。此外,还创建了一个数据集来评估这些模型,该数据集由另外15个实例组成。随机树算法生成的模型在预测FDM零件的表面粗糙度方面取得了最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7943/6721777/1ab0ef9b6510/materials-12-02574-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验