Suppr超能文献

异质核核糖核蛋白 H1 与光敏色素和 U1 snRNP 复合物协同调节. 的可变剪接。

Heterogeneous Nuclear Ribonucleoprotein H1 Coordinates with Phytochrome and the U1 snRNP Complex to Regulate Alternative Splicing in .

机构信息

Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.

Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan.

出版信息

Plant Cell. 2019 Oct;31(10):2510-2524. doi: 10.1105/tpc.19.00314. Epub 2019 Aug 13.

Abstract

Plant photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although gene expression is modulated by photoreceptors at various levels, the regulatory mechanism at the pre-mRNA splicing step remains unclear. Alternative splicing, a widespread mechanism in eukaryotes that generates two or more mRNAs from the same pre-mRNA, is largely controlled by splicing regulators, which recruit spliceosomal components to initiate pre-mRNA splicing. The red/far-red light photoreceptor phytochrome participates in light-mediated splicing regulation, but the detailed mechanism remains unclear. Here, using protein-protein interaction analysis, we demonstrate that in the moss , phytochrome4 physically interacts with the splicing regulator heterogeneous nuclear ribonucleoprotein H1 (PphnRNP-H1) in the nucleus, a process dependent on red light. We show that PphnRNP-H1 is involved in red light-mediated phototropic responses in and that it binds with higher affinity to the splicing factor pre-mRNA-processing factor39-1 (PpPRP39-1) in the presence of red light-activated phytochromes. Furthermore, PpPRP39-1 associates with the core component of U1 small nuclear RNP in Genome-wide analyses demonstrated the involvement of both PphnRNP-H1 and PpPRP39-1 in light-mediated splicing regulation. Our results suggest that phytochromes target the early step of spliceosome assembly via a cascade of protein-protein interactions to control pre-mRNA splicing and photomorphogenic responses.

摘要

植物光受体严格调控基因表达以控制光形态建成反应。尽管基因表达在多个水平上受到光受体的调控,但在 pre-mRNA 剪接步骤的调控机制尚不清楚。可变剪接是真核生物中一种广泛存在的机制,它可以从同一 pre-mRNA 产生两个或更多的 mRNA,主要受剪接调控因子控制,这些因子募集剪接体成分以启动 pre-mRNA 剪接。红光/远红光光受体光敏色素参与光介导的剪接调控,但详细机制尚不清楚。在这里,我们使用蛋白质-蛋白质相互作用分析,证明在苔藓植物中,光敏色素 4 在细胞核中与剪接调控因子异质核核糖核蛋白 H1(PphnRNP-H1)发生物理相互作用,该过程依赖于红光。我们表明,PphnRNP-H1 参与了 和中的红光介导的向光性反应,并且在红光激活的光敏色素存在下,它与剪接因子 pre-mRNA 处理因子 39-1(PpPRP39-1)结合的亲和力更高。此外,PpPRP39-1 在苔藓植物中与 U1 小核 RNP 的核心组件结合。全基因组分析表明 PphnRNP-H1 和 PpPRP39-1 都参与了光介导的剪接调控。我们的结果表明,光敏色素通过级联蛋白-蛋白相互作用靶向剪接体组装的早期步骤,以控制 pre-mRNA 剪接和光形态建成反应。

相似文献

引用本文的文献

1
What is going on inside of phytochrome B photobodies?phytochrome B 光体内部发生了什么?
Plant Cell. 2024 May 29;36(6):2065-2085. doi: 10.1093/plcell/koae084.
2
Light signaling in plants-a selective history.植物中的光信号——选择性历史。
Plant Physiol. 2024 Apr 30;195(1):213-231. doi: 10.1093/plphys/kiae110.

本文引用的文献

6
Acute Effects of Light on Alternative Splicing in Light-Grown Plants.光对光生长植物可变剪接的急性影响。
Photochem Photobiol. 2016 Jan-Feb;92(1):126-33. doi: 10.1111/php.12550. Epub 2015 Dec 15.
10
A chloroplast retrograde signal regulates nuclear alternative splicing.叶绿体逆行信号调控核选择性剪接。
Science. 2014 Apr 25;344(6182):427-30. doi: 10.1126/science.1250322. Epub 2014 Apr 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验