Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan.
Plant Cell. 2019 Oct;31(10):2510-2524. doi: 10.1105/tpc.19.00314. Epub 2019 Aug 13.
Plant photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although gene expression is modulated by photoreceptors at various levels, the regulatory mechanism at the pre-mRNA splicing step remains unclear. Alternative splicing, a widespread mechanism in eukaryotes that generates two or more mRNAs from the same pre-mRNA, is largely controlled by splicing regulators, which recruit spliceosomal components to initiate pre-mRNA splicing. The red/far-red light photoreceptor phytochrome participates in light-mediated splicing regulation, but the detailed mechanism remains unclear. Here, using protein-protein interaction analysis, we demonstrate that in the moss , phytochrome4 physically interacts with the splicing regulator heterogeneous nuclear ribonucleoprotein H1 (PphnRNP-H1) in the nucleus, a process dependent on red light. We show that PphnRNP-H1 is involved in red light-mediated phototropic responses in and that it binds with higher affinity to the splicing factor pre-mRNA-processing factor39-1 (PpPRP39-1) in the presence of red light-activated phytochromes. Furthermore, PpPRP39-1 associates with the core component of U1 small nuclear RNP in Genome-wide analyses demonstrated the involvement of both PphnRNP-H1 and PpPRP39-1 in light-mediated splicing regulation. Our results suggest that phytochromes target the early step of spliceosome assembly via a cascade of protein-protein interactions to control pre-mRNA splicing and photomorphogenic responses.
植物光受体严格调控基因表达以控制光形态建成反应。尽管基因表达在多个水平上受到光受体的调控,但在 pre-mRNA 剪接步骤的调控机制尚不清楚。可变剪接是真核生物中一种广泛存在的机制,它可以从同一 pre-mRNA 产生两个或更多的 mRNA,主要受剪接调控因子控制,这些因子募集剪接体成分以启动 pre-mRNA 剪接。红光/远红光光受体光敏色素参与光介导的剪接调控,但详细机制尚不清楚。在这里,我们使用蛋白质-蛋白质相互作用分析,证明在苔藓植物中,光敏色素 4 在细胞核中与剪接调控因子异质核核糖核蛋白 H1(PphnRNP-H1)发生物理相互作用,该过程依赖于红光。我们表明,PphnRNP-H1 参与了 和中的红光介导的向光性反应,并且在红光激活的光敏色素存在下,它与剪接因子 pre-mRNA 处理因子 39-1(PpPRP39-1)结合的亲和力更高。此外,PpPRP39-1 在苔藓植物中与 U1 小核 RNP 的核心组件结合。全基因组分析表明 PphnRNP-H1 和 PpPRP39-1 都参与了光介导的剪接调控。我们的结果表明,光敏色素通过级联蛋白-蛋白相互作用靶向剪接体组装的早期步骤,以控制 pre-mRNA 剪接和光形态建成反应。