Suppr超能文献

Epac2 升高可逆转硫酸软骨素蛋白聚糖的抑制作用,并将损伤后抑制性环境转化为促进脊髓损伤模型中的轴突生长。

Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Model of Spinal Cord Injury.

机构信息

Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and.

Center for Neuroscience, Surgery and Trauma, Queen Mary University of London, London E1 2AT, United Kingdom.

出版信息

J Neurosci. 2019 Oct 16;39(42):8330-8346. doi: 10.1523/JNEUROSCI.0374-19.2019. Epub 2019 Aug 13.

Abstract

Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an rat model of SCI mimicking post-SCI environment and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth. During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth , even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an model of spinal cord injury, suggesting a new strategy for spinal cord repair.

摘要

数以百万计的患者患有脊髓损伤 (SCI),但没有有效的治疗方法。提高 cAMP 可以促进中枢神经系统神经元在生长抑制分子存在下的生长。cAMP 对神经元生长的影响部分是由 Epac 介导的,Epac 由 Epac1 和 Epac2 组成;后者主要在出生后的神经组织中表达。在这里,我们假设 Epac2 的激活将增强 SCI 后的轴突生长。通过 测定,我们首次证明,使用特异性可溶性激动剂(S-220)激活 Epac2 可显著增强出生后大鼠皮质神经元的突起生长,并显著克服软骨素硫酸盐蛋白聚糖和成熟星形胶质细胞对神经元生长的抑制作用。我们进一步通过模仿 SCI 后环境的 SCI 大鼠模型和通过自组装基于 Fmoc 的水凝胶(该水凝胶具有适合 SCI 修复的特性)来递送 S-220,研究了 Epac2 激活在促进轴突生长方面的新潜力。我们发现,与对照组相比,S-220 显著增强了器官型脊髓切片中穿过病变间隙的轴突生长。此外,我们首次阐明,Epac2 的激活通过减少星形胶质细胞/小胶质细胞的激活并将星形胶质细胞转化为引导突起生长的伸长形态,深刻地调节了病变环境。最后,我们发现,当在雄性成年大鼠挫伤 SCI 后 3 周通过凝胶递送 S-220 时,治疗后长达 4 周,运动表现明显改善。我们的数据表明,S-220 通过对损伤后神经元和神经胶质的有益作用,具有治疗 SCI 的巨大潜力,从而促进轴突生长。在发育过程中,神经元 cAMP 水平与神经系统建立时的胚胎阶段相比显著降低。这对脊髓损伤后有重要的后果,因为神经元不能再生。提高 cAMP 水平可鼓励受伤的中枢神经系统神经元发芽并延伸轴突。我们已经证明,激活其下游效应子 Epac2 可以增强突起生长,即使在存在抑制性环境的情况下也是如此。我们使用水凝胶形式的新型基于生物材料的药物输送系统,进一步证明了 Epac2 激动剂的局部递送可增强 SCI 模型中的轴突生长并最大程度地减少神经胶质细胞的激活,这为脊髓修复提供了一种新策略。

相似文献

4
EphA4 Obstructs Spinal Cord Neuron Regeneration by Promoting Excessive Activation of Astrocytes.
Cell Mol Neurobiol. 2022 Jul;42(5):1557-1568. doi: 10.1007/s10571-021-01046-x. Epub 2021 Feb 17.
5
Inhibiting cortical protein kinase A in spinal cord injured rats enhances efficacy of rehabilitative training.
Exp Neurol. 2016 Sep;283(Pt A):365-74. doi: 10.1016/j.expneurol.2016.07.001. Epub 2016 Jul 8.
7
Chondroitin 6-sulfate-binding peptides improve recovery in spinal cord-injured mice.
Eur J Pharmacol. 2021 Nov 5;910:174421. doi: 10.1016/j.ejphar.2021.174421. Epub 2021 Aug 12.

引用本文的文献

2
Aberrant gene expression yet undiminished retinal ganglion cell genesis in iPSC-derived models of optic nerve hypoplasia.
Ophthalmic Genet. 2024 Feb;45(1):1-15. doi: 10.1080/13816810.2023.2253902. Epub 2024 Jan 26.
6
Bridging the gap of axonal regeneration in the central nervous system: A state of the art review on central axonal regeneration.
Front Neurosci. 2022 Nov 9;16:1003145. doi: 10.3389/fnins.2022.1003145. eCollection 2022.
8
Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments.
Front Mol Neurosci. 2022 Feb 23;15:808510. doi: 10.3389/fnmol.2022.808510. eCollection 2022.
10
Hydrogels as delivery systems for spinal cord injury regeneration.
Mater Today Bio. 2021 Jan 22;9:100093. doi: 10.1016/j.mtbio.2021.100093. eCollection 2021 Jan.

本文引用的文献

1
Inhibition of EPAC2 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury via the p38/BIM/Caspase-3 Pathway.
J Mol Neurosci. 2019 Mar;67(3):353-363. doi: 10.1007/s12031-018-1215-y. Epub 2019 Jan 3.
2
A refined rat primary neonatal microglial culture method that reduces time, cost and animal use.
J Neurosci Methods. 2018 Jul 1;304:92-102. doi: 10.1016/j.jneumeth.2018.04.017. Epub 2018 Apr 27.
3
Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development.
Physiol Rev. 2018 Apr 1;98(2):919-1053. doi: 10.1152/physrev.00025.2017.
4
Integrin Activation: Implications for Axon Regeneration.
Cells. 2018 Mar 10;7(3):20. doi: 10.3390/cells7030020.
5
The role of cAMP and its downstream targets in neurite growth in the adult nervous system.
Neurosci Lett. 2017 Jun 23;652:56-63. doi: 10.1016/j.neulet.2016.12.033. Epub 2016 Dec 15.
6
Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury.
Neurobiol Dis. 2017 Mar;99:24-35. doi: 10.1016/j.nbd.2016.12.010. Epub 2016 Dec 14.
7
Rat models of spinal cord injury: from pathology to potential therapies.
Dis Model Mech. 2016 Oct 1;9(10):1125-1137. doi: 10.1242/dmm.025833.
8
Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?
Neural Regen Res. 2016 Aug;11(8):1201-3. doi: 10.4103/1673-5374.189160.
9
Sulfatase-mediated manipulation of the astrocyte-Schwann cell interface.
Glia. 2017 Jan;65(1):19-33. doi: 10.1002/glia.23047. Epub 2016 Aug 18.
10
Inhibiting cortical protein kinase A in spinal cord injured rats enhances efficacy of rehabilitative training.
Exp Neurol. 2016 Sep;283(Pt A):365-74. doi: 10.1016/j.expneurol.2016.07.001. Epub 2016 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验