Suppr超能文献

EPIP:一种用于条件特异性增强子-启动子相互作用预测的新方法。

EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction.

机构信息

Department of Computer Science, University of Central Florida, Orlando, FL, USA.

Burnett School of Biomedical Science, College of Medicine, University of Central Orlando, Orlando, FL, USA.

出版信息

Bioinformatics. 2019 Oct 15;35(20):3877-3883. doi: 10.1093/bioinformatics/btz641.

Abstract

MOTIVATION

The identification of enhancer-promoter interactions (EPIs), especially condition-specific ones, is important for the study of gene transcriptional regulation. Existing experimental approaches for EPI identification are still expensive, and available computational methods either do not consider or have low performance in predicting condition-specific EPIs.

RESULTS

We developed a novel computational method called EPIP to reliably predict EPIs, especially condition-specific ones. EPIP is capable of predicting interactions in samples with limited data as well as in samples with abundant data. Tested on more than eight cell lines, EPIP reliably identifies EPIs, with an average area under the receiver operating characteristic curve of 0.95 and an average area under the precision-recall curve of 0.73. Tested on condition-specific EPIPs, EPIP correctly identified 99.26% of them. Compared with two recently developed methods, EPIP outperforms them with a better accuracy.

AVAILABILITY AND IMPLEMENTATION

The EPIP tool is freely available at http://www.cs.ucf.edu/˜xiaoman/EPIP/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

增强子-启动子相互作用(EPIs)的鉴定,特别是条件特异性的相互作用,对于研究基因转录调控非常重要。现有的 EPI 鉴定实验方法仍然昂贵,并且现有的计算方法要么不考虑,要么在预测条件特异性 EPI 方面性能较低。

结果

我们开发了一种名为 EPIP 的新型计算方法,可可靠地预测 EPI,特别是条件特异性的 EPI。EPIP 能够预测数据有限和数据丰富的样本中的相互作用。在超过八个细胞系上进行测试,EPIP 可靠地识别 EPI,其接收者操作特征曲线下的平均面积为 0.95,精度-召回曲线下的平均面积为 0.73。在条件特异性 EPI 上进行测试时,EPIP 正确识别了 99.26%的 EPI。与最近开发的两种方法相比,EPIP 的准确性更好。

可用性和实现

EPIP 工具可在 http://www.cs.ucf.edu/˜xiaoman/EPIP/ 上免费获得。

补充信息

补充数据可在生物信息学在线获得。

相似文献

8
TarPmiR: a new approach for microRNA target site prediction.TarPmiR:一种预测微小RNA靶位点的新方法。
Bioinformatics. 2016 Sep 15;32(18):2768-75. doi: 10.1093/bioinformatics/btw318. Epub 2016 May 20.

引用本文的文献

5
A computational modeling of pri-miRNA expression.前体 miRNA 表达的计算建模。
PLoS One. 2024 Jan 2;19(1):e0290768. doi: 10.1371/journal.pone.0290768. eCollection 2024.

本文引用的文献

1
Comparison of computational methods for Hi-C data analysis.用于Hi-C数据分析的计算方法比较。
Nat Methods. 2017 Jul;14(7):679-685. doi: 10.1038/nmeth.4325. Epub 2017 Jun 12.
5
In the loop: promoter-enhancer interactions and bioinformatics.循环中:启动子-增强子相互作用与生物信息学
Brief Bioinform. 2016 Nov;17(6):980-995. doi: 10.1093/bib/bbv097. Epub 2015 Nov 19.
9
Global view of enhancer-promoter interactome in human cells.人类细胞中增强子-启动子相互作用组的全局视图。
Proc Natl Acad Sci U S A. 2014 May 27;111(21):E2191-9. doi: 10.1073/pnas.1320308111. Epub 2014 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验