Suppr超能文献

采用包括 SVM 模型、药效团建模、分子对接和生物评价在内的多步虚拟筛选方法鉴定潜在的组蛋白去乙酰化酶 1(HDAC1)抑制剂。

Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation.

机构信息

Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.

Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India.

出版信息

J Biomol Struct Dyn. 2020 Jul;38(11):3280-3295. doi: 10.1080/07391102.2019.1654925. Epub 2019 Sep 9.

Abstract

Histone Deacetylases (HDACs) play a significant role in the regulation of gene expression by modifying histones and non-histone substrates. Since they are key regulators in the reversible epigenetic mechanism, they are considered as promising drug targets for the treatment of various cancers. In the present study, we have developed a workflow for identification of HDAC1 inhibitors using a multistage virtual screening approach from Maybridge and Chembridge chemical library. Initially, a support vector machine based classification model was generated, followed by generation of a zinc-binding group (ZBG) based pharmacophore model. The hits screened from these models were further subjected to molecular docking. Finally, a set of twenty-three molecules were selected from Maybridge and Chembridge library. The biological evaluation of these hits revealed that three out of the twenty-three tested compounds are showing HDAC1 inhibition along with the moderate anti-proliferative activity. It was found that the identified inhibitors are exerting chromosomal loss effect in growing yeast cells. Further, to extend the activity spectrum of the identified inhibitors, the optimization guidelines were drawn with the hydration site mapping approach by using tool Watermap.Communicated by Ramaswamy H. Sarma.

摘要

组蛋白去乙酰化酶(HDACs)通过修饰组蛋白和非组蛋白底物在基因表达调控中发挥重要作用。由于它们是可逆表观遗传机制中的关键调节因子,因此被认为是治疗各种癌症的有前途的药物靶点。在本研究中,我们使用多阶段虚拟筛选方法从 Maybridge 和 Chembridge 化学库中开发了一种鉴定 HDAC1 抑制剂的工作流程。最初,生成了基于支持向量机的分类模型,然后生成了基于锌结合基团(ZBG)的药效团模型。从这些模型中筛选出的命中物进一步进行分子对接。最后,从 Maybridge 和 Chembridge 库中选择了一组 23 个分子。对这些命中物的生物学评估表明,在 23 种测试化合物中有 3 种显示出 HDAC1 抑制作用,同时具有中等的抗增殖活性。结果发现,鉴定出的抑制剂在生长的酵母细胞中发挥染色体丢失作用。此外,为了扩展鉴定出的抑制剂的活性谱,使用 Hydration Site Mapping 方法通过工具 Watermap 绘制了优化指南。由 Ramaswamy H. Sarma 传达。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验