Suppr超能文献

核硝化定义了诱导多能性的最佳区域。

Nuclear -Nitrosylation Defines an Optimal Zone for Inducing Pluripotency.

机构信息

Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (P.K.C., S.M., K.C., J.P.C.).

AgeX Therapeutics Inc, Alameda, CA (J.L.).

出版信息

Circulation. 2019 Sep 24;140(13):1081-1099. doi: 10.1161/CIRCULATIONAHA.119.042371. Epub 2019 Aug 15.

Abstract

BACKGROUND

We found that cell-autonomous innate immune signaling causes global changes in the expression of epigenetic modifiers to facilitate nuclear reprogramming to pluripotency. A role of -nitrosylation by inducible nitric oxide (NO) synthase, an important effector of innate immunity, has been previously described in the transdifferentiation of fibroblasts to endothelial cells. Accordingly, we hypothesized that -nitrosylation might also have a role in nuclear reprogramming to pluripotency.

METHODS

We used murine embryonic fibroblasts containing a doxycycline-inducible cassette encoding the Yamanaka factors (, , , and c-), and genetic or pharmacological inhibition of inducible NO synthase together with the Tandem Mass Tag approach, chromatin immunoprecipitation-quantitative polymerase chain reaction, site-directed mutagenesis, and micrococcal nuclease assay to determine the role of -nitrosylation during nuclear reprogramming to pluripotency.

RESULTS

We show that an optimal zone of innate immune activation, as defined by maximal yield of induced pluripotent stem cells, is determined by the degree of activation of nuclear factor κ-light-chain-enhancer of activated B cells; NO generation; -nitrosylation of nuclear proteins; and DNA accessibility as reflected by histone markings and increased mononucleosome generation in a micrococcal nuclease assay. Genetic or pharmacological inhibition of inducible NO synthase reduces DNA accessibility and suppresses induced pluripotent stem cell generation. The effect of NO on DNA accessibility is mediated in part by -nitrosylation of nuclear proteins, including MTA3 (Metastasis Associated 1 Family Member 3), a subunit of NuRD (Nucleosome Remodeling Deacetylase) complex. -Nitrosylation of MTA3 is associated with decreased NuRD activity. Overexpression of mutant MTA3, in which the 2 cysteine residues are replaced by alanine residues, impairs the generation of induced pluripotent stem cells.

CONCLUSIONS

This is the first report showing that DNA accessibility and induced pluripotent stem cell yield depend on the extent of cell-autonomous innate immune activation and NO generation. This "Goldilocks zone" for inflammatory signaling and epigenetic plasticity may have broader implications for cell fate and phenotypic fluidity.

摘要

背景

我们发现,细胞自主固有免疫信号会导致表观遗传修饰因子的表达发生全局变化,从而促进核重编程为多能性。诱导型一氧化氮合酶(固有免疫的重要效应因子)的 - 亚硝化作用先前已被描述为成纤维细胞向内皮细胞的转分化过程中的作用。因此,我们假设 - 亚硝化作用也可能在核重编程为多能性中发挥作用。

方法

我们使用含有四环素诱导盒的小鼠胚胎成纤维细胞,该诱导盒编码 Yamanaka 因子(、、、和 c-),以及诱导型一氧化氮合酶的遗传或药理学抑制,同时使用串联质量标签方法、染色质免疫沉淀 - 定量聚合酶链反应、定点突变和微球菌核酸酶测定,以确定 - 亚硝化作用在核重编程为多能性过程中的作用。

结果

我们表明,固有免疫激活的最佳区域(定义为诱导多能干细胞的最大产量)由核因子 κ-轻链增强子激活 B 细胞的激活程度决定;NO 的产生;核蛋白的 - 亚硝化作用;以及微球菌核酸酶测定中组蛋白标记和单核小体生成增加所反映的 DNA 可及性。诱导型一氧化氮合酶的遗传或药理学抑制会降低 DNA 可及性并抑制诱导多能干细胞的生成。NO 对 DNA 可及性的影响部分是通过核蛋白的 - 亚硝化作用介导的,包括 MTA3(转移相关 1 家族成员 3),NuRD(核小体重塑去乙酰化酶)复合物的一个亚基。MTA3 的 - 亚硝化作用与 NuRD 活性的降低有关。突变 MTA3 的过表达,其中 2 个半胱氨酸残基被丙氨酸残基取代,会损害诱导多能干细胞的生成。

结论

这是第一项表明 DNA 可及性和诱导多能干细胞产量取决于细胞自主固有免疫激活和 NO 生成程度的报告。这种炎症信号和表观遗传可塑性的“金发姑娘区”可能对细胞命运和表型流动性具有更广泛的意义。

相似文献

1
Nuclear -Nitrosylation Defines an Optimal Zone for Inducing Pluripotency.
Circulation. 2019 Sep 24;140(13):1081-1099. doi: 10.1161/CIRCULATIONAHA.119.042371. Epub 2019 Aug 15.
2
Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming.
Stem Cells. 2017 May;35(5):1197-1207. doi: 10.1002/stem.2607. Epub 2017 Mar 27.
3
Transdifferentiation Requires iNOS Activation: Role of RING1A S-Nitrosylation.
Circ Res. 2016 Oct 14;119(9):e129-e138. doi: 10.1161/CIRCRESAHA.116.308263. Epub 2016 Sep 13.
4
Transflammation: How Innate Immune Activation and Free Radicals Drive Nuclear Reprogramming.
Antioxid Redox Signal. 2018 Jul 10;29(2):205-218. doi: 10.1089/ars.2017.7364. Epub 2018 Apr 26.
5
Transflammation: Innate immune signaling in nuclear reprogramming.
Adv Drug Deliv Rev. 2017 Oct 1;120:133-141. doi: 10.1016/j.addr.2017.09.010. Epub 2017 Sep 13.
6
Optimal ROS Signaling Is Critical for Nuclear Reprogramming.
Cell Rep. 2016 May 3;15(5):919-925. doi: 10.1016/j.celrep.2016.03.084. Epub 2016 Apr 21.
7
NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells.
Stem Cells. 2013 Jul;31(7):1278-86. doi: 10.1002/stem.1374.
8
Activation of innate immunity is required for efficient nuclear reprogramming.
Cell. 2012 Oct 26;151(3):547-58. doi: 10.1016/j.cell.2012.09.034.

引用本文的文献

1
O-GlcNAcylation promotes angiogenic transdifferentiation to reverse vascular ischemia.
Nat Cardiovasc Res. 2025 Jul 4. doi: 10.1038/s44161-025-00673-7.
2
Modulation of cell fate by shock wave therapy in ischaemic heart disease.
Eur Heart J Open. 2025 Apr 8;5(2):oeaf011. doi: 10.1093/ehjopen/oeaf011. eCollection 2025 Mar.
3
Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application.
Signal Transduct Target Ther. 2024 Dec 4;9(1):340. doi: 10.1038/s41392-024-02030-9.
4
Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation.
Methodist Debakey Cardiovasc J. 2024 Aug 20;20(4):31-41. doi: 10.14797/mdcvj.1400. eCollection 2024.
5
Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics.
Commun Chem. 2024 Apr 10;7(1):80. doi: 10.1038/s42004-024-01162-x.
6
Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives.
Curr Med Sci. 2024 Feb;44(1):1-27. doi: 10.1007/s11596-023-2818-2. Epub 2023 Dec 7.
7
Transflammation in tissue regeneration and response to injury: How cell-autonomous inflammatory signaling mediates cell plasticity.
Adv Drug Deliv Rev. 2023 Dec;203:115118. doi: 10.1016/j.addr.2023.115118. Epub 2023 Oct 25.
8
Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics.
J Am Chem Soc. 2023 Oct 4;145(39):21303-21318. doi: 10.1021/jacs.3c05797. Epub 2023 Sep 22.
9
Role of angiogenic transdifferentiation in vascular recovery.
Front Cardiovasc Med. 2023 May 2;10:1155835. doi: 10.3389/fcvm.2023.1155835. eCollection 2023.
10
Advances in neovascularization after diabetic ischemia.
World J Diabetes. 2022 Nov 15;13(11):926-939. doi: 10.4239/wjd.v13.i11.926.

本文引用的文献

1
Transient and Permanent Reconfiguration of Chromatin and Transcription Factor Occupancy Drive Reprogramming.
Cell Stem Cell. 2017 Dec 7;21(6):834-845.e6. doi: 10.1016/j.stem.2017.11.007.
2
Chromatin Accessibility Dynamics during iPSC Reprogramming.
Cell Stem Cell. 2017 Dec 7;21(6):819-833.e6. doi: 10.1016/j.stem.2017.10.012.
3
Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming.
Stem Cells. 2017 May;35(5):1197-1207. doi: 10.1002/stem.2607. Epub 2017 Mar 27.
4
Transdifferentiation Requires iNOS Activation: Role of RING1A S-Nitrosylation.
Circ Res. 2016 Oct 14;119(9):e129-e138. doi: 10.1161/CIRCRESAHA.116.308263. Epub 2016 Sep 13.
5
From Reflux Esophagitis to Esophageal Adenocarcinoma.
Dig Dis. 2016;34(5):483-90. doi: 10.1159/000445225. Epub 2016 Jun 22.
6
Optimal ROS Signaling Is Critical for Nuclear Reprogramming.
Cell Rep. 2016 May 3;15(5):919-925. doi: 10.1016/j.celrep.2016.03.084. Epub 2016 Apr 21.
7
Nucleosome architecture throughout the cell cycle.
Sci Rep. 2016 Jan 28;6:19729. doi: 10.1038/srep19729.
8
Present and future challenges of induced pluripotent stem cells.
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 19;370(1680):20140367. doi: 10.1098/rstb.2014.0367.
9
The innate immune system, toll-like receptors and dermal wound healing: A review.
Vascul Pharmacol. 2015 Aug;71:31-6. doi: 10.1016/j.vph.2015.02.007. Epub 2015 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验