Department of Materials Science and Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA.
Department of Chemical Engineering, Stanford University, 443 Via Ortega, Room 328, Stanford, CA, 93405, USA.
Adv Mater. 2019 Sep;31(39):e1902869. doi: 10.1002/adma.201902869. Epub 2019 Aug 15.
Due to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regenerative medicine, and energy storage. Despite the promising properties of PEDOT:PSS-based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation ("electrogelation") method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high-performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures.
由于其高含水量和宏观连通性,由导电聚合物 PEDOT:PSS 制成的水凝胶是一种很有前途的平台,可以制造出各种各样的多孔导电材料,这些材料在生物电子学、再生医学和储能等各种应用中越来越受到关注。尽管基于 PEDOT:PSS 的多孔材料具有很有前景的特性,但仍然需要对 PEDOT:PSS 水凝胶进行图案化处理,以实现与多功能和多通道电子设备的集成。在这项工作中,提出了一种新的电化学凝胶化(“电凝胶化”)方法,可快速在任何导电模板(包括弯曲和 3D 表面)上对 PEDOT:PSS 水凝胶进行图案化。通过使用牺牲金属层来生成水凝胶图案,可以实现高空间分辨率,从而能够将具有理想材料特性的高性能导电水凝胶和气凝胶引入到越来越复杂的器件结构中。