Suppr超能文献

遗传行为筛选鉴定出一种孤儿抗阿片系统。

Genetic behavioral screen identifies an orphan anti-opioid system.

机构信息

Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.

Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.

出版信息

Science. 2019 Sep 20;365(6459):1267-1273. doi: 10.1126/science.aau2078. Epub 2019 Aug 15.

Abstract

Opioids target the μ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in , we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.

摘要

阿片类药物靶向μ-阿片受体(MOR)以产生无与伦比的疼痛管理效果,但它们的成瘾特性可能导致严重滥用。我们开发了一种全动物行为平台,用于公正地发现影响阿片类药物反应性的基因。我们使用正向遗传学在, 中鉴定出一个保守的孤儿受体 GPR139,具有抗阿片活性。GPR139与 MOR 在阿片敏感的脑回路中共表达,与 MOR 结合,并抑制异三聚体鸟苷核苷酸结合蛋白(G 蛋白)的信号转导。在小鼠中删除 GPR139 增强了阿片类药物诱导的神经元放电抑制,以调节吗啡诱导的镇痛、奖赏和戒断。因此,GPR139 可能是增加阿片类药物安全性的有用靶点。这些结果还表明 作为遗传发现 G 蛋白偶联受体信号传导原理的可扩展平台的潜力。

相似文献

1
Genetic behavioral screen identifies an orphan anti-opioid system.
Science. 2019 Sep 20;365(6459):1267-1273. doi: 10.1126/science.aau2078. Epub 2019 Aug 15.
2
The orphan receptor GPR139 signals via G to oppose opioid effects.
J Biol Chem. 2020 Jul 31;295(31):10822-10830. doi: 10.1074/jbc.AC120.014770. Epub 2020 Jun 23.
3
The role of orphan receptor GPR139 in neuropsychiatric behavior.
Neuropsychopharmacology. 2022 Mar;47(4):902-913. doi: 10.1038/s41386-021-00962-2. Epub 2021 Jan 21.
6
Regulator of G-Protein Signaling 7 Regulates Reward Behavior by Controlling Opioid Signaling in the Striatum.
Biol Psychiatry. 2016 Aug 1;80(3):235-45. doi: 10.1016/j.biopsych.2015.07.026. Epub 2015 Aug 14.
9
Congenic C57BL/6 mu opiate receptor (MOR) knockout mice: baseline and opiate effects.
Genes Brain Behav. 2003 Apr;2(2):114-21. doi: 10.1034/j.1601-183x.2003.00016.x.
10
Ptchd1 mediates opioid tolerance via cholesterol-dependent effects on μ-opioid receptor trafficking.
Nat Neurosci. 2022 Sep;25(9):1179-1190. doi: 10.1038/s41593-022-01135-0. Epub 2022 Aug 18.

引用本文的文献

1
Homeostatic scaling of dynorphin signaling by a non-canonical opioid receptor.
Nat Commun. 2025 Jul 23;16(1):6786. doi: 10.1038/s41467-025-62133-x.
2
Mu-opioid receptor activation potentiates excitatory transmission at the habenulo-peduncular synapse.
Cell Rep. 2025 Jul 22;44(7):115874. doi: 10.1016/j.celrep.2025.115874. Epub 2025 Jun 19.
3
Research Progress of GPR137 in Malignant Tumors: A Review.
Onco Targets Ther. 2025 Apr 15;18:545-558. doi: 10.2147/OTT.S511943. eCollection 2025.
4
Uncoupling overeating and fat storage by modulation of different serotonergic receptors.
bioRxiv. 2025 Mar 19:2025.03.18.644037. doi: 10.1101/2025.03.18.644037.
6
GPR139 agonist and antagonist differentially regulate retrieval and consolidation of fear memory in the zebrafish.
Front Neurosci. 2024 Dec 5;18:1461148. doi: 10.3389/fnins.2024.1461148. eCollection 2024.
7
Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches.
Curr Issues Mol Biol. 2024 Oct 19;46(10):11646-11664. doi: 10.3390/cimb46100691.
8
Emerging modes of regulation of neuromodulatory G protein-coupled receptors.
Trends Neurosci. 2024 Aug;47(8):635-650. doi: 10.1016/j.tins.2024.05.008. Epub 2024 Jun 11.
10
Nicotine Motivated Behavior in .
Int J Mol Sci. 2024 Jan 29;25(3):1634. doi: 10.3390/ijms25031634.

本文引用的文献

1
From controlled to compulsive drug-taking: The role of the habenula in addiction.
Neurosci Biobehav Rev. 2019 Nov;106:102-111. doi: 10.1016/j.neubiorev.2018.06.018. Epub 2018 Jun 21.
2
G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs?
Mol Pharmacol. 2018 Apr;93(4):251-258. doi: 10.1124/mol.117.111062. Epub 2018 Jan 3.
3
Pharmacogenomics of GPCR Drug Targets.
Cell. 2018 Jan 11;172(1-2):41-54.e19. doi: 10.1016/j.cell.2017.11.033. Epub 2017 Dec 14.
4
A Review of Current and Emerging Approaches to Pain Management in the Emergency Department.
Pain Ther. 2017 Dec;6(2):193-202. doi: 10.1007/s40122-017-0090-5. Epub 2017 Nov 10.
6
A comprehensive map of molecular drug targets.
Nat Rev Drug Discov. 2017 Jan;16(1):19-34. doi: 10.1038/nrd.2016.230. Epub 2016 Dec 2.
7
Neurobiology of addiction: a neurocircuitry analysis.
Lancet Psychiatry. 2016 Aug;3(8):760-773. doi: 10.1016/S2215-0366(16)00104-8.
8
Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade.
J Neurosci. 2016 May 18;36(20):5498-508. doi: 10.1523/JNEUROSCI.4520-15.2016.
9
Opioid Abuse in Chronic Pain--Misconceptions and Mitigation Strategies.
N Engl J Med. 2016 Mar 31;374(13):1253-63. doi: 10.1056/NEJMra1507771.
10
Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems.
Pharmacol Rev. 2016 Apr;68(2):419-57. doi: 10.1124/pr.114.009209. Epub 2016 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验