CSIRO Agriculture & Food, GPO Box 1700, Canberra, 2601, ACT, Australia.
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
Nat Commun. 2019 Aug 15;10(1):3688. doi: 10.1038/s41467-019-11597-9.
Soil organic carbon (SOC) in the subsoil below 0.3 m accounts for the majority of total SOC and may be as sensitive to climate change as topsoil SOC. Here we map global SOC turnover times (τ) in the subsoil layer at 1 km resolution using observational databases. Global mean τ is estimated to be [Formula: see text] yr (mean with 95% confidence interval), and deserts and tundra show the shortest ([Formula: see text] yr) and longest ([Formula: see text] yr) τ respectively. Across the globe, mean τ ranges from 9 (the 5% quantile) to 6332 years (the 95% quantile). Temperature is the most important factor negatively affecting τ, but the overall effect of climate (including temperature and precipitation) is secondary compared with the overall effect of assessed soil properties (e.g., soil texture and pH). The high-resolution mapping of τ and the quantification of its controls provide a benchmark for diagnosing subsoil SOC dynamics under climate change.
土壤有机碳(SOC)在 0.3 米以下的底土中占总 SOC 的大部分,可能与表土 SOC 一样对气候变化敏感。在这里,我们使用观测数据库以 1 公里的分辨率绘制了全球底土层 SOC 周转时间(τ)的地图。全球平均 τ 估计为[公式:见文本]年(95%置信区间的平均值),沙漠和苔原分别显示最短([公式:见文本]年)和最长([公式:见文本]年)τ。在全球范围内,平均 τ 的范围从 9(5%分位数)到 6332 年(95%分位数)。温度是对 τ 产生负面影响的最重要因素,但与评估土壤特性(例如土壤质地和 pH)的整体影响相比,气候(包括温度和降水)的整体影响较小。τ 的高分辨率制图及其控制因素的量化为诊断气候变化下底土 SOC 动态提供了基准。