Suppr超能文献

模型预测全球变化下未来土壤碳动态的不确定性,这些模型受到总碳测量的约束。

Uncertain future soil carbon dynamics under global change predicted by models constrained by total carbon measurements.

机构信息

CSIRO Agriculture, GPO Box 1700, Canberra, Australian Capital Territory, 1601, Australia.

College of Forest Science, Beijing Forestry University, Beijing, 100083, China.

出版信息

Ecol Appl. 2017 Apr;27(3):1001-1009. doi: 10.1002/eap.1504. Epub 2017 Mar 16.

Abstract

Pool-based carbon (C) models are widely applied to predict soil C dynamics under global change and infer underlying mechanisms. However, it is unclear about the credibility of model-predicted C pool size, decay rate (k), and/or microbial C use efficiency (e) as only data on bulked total C is usually available for model constraining. Using observing system simulation experiments (OSSE), we constrained a two-pool model using simulated data sets of total soil C dynamics under topical hypotheses on responses of soil C dynamics to warming and elevated CO (i.e., global change scenarios). The results indicated that the model predicted great uncertainties in C pool size, k, and e under all global change scenarios, resulting in the difficulty to correctly infer the presupposed "real" values of those parameters that are used to generate the simulated total soil C for constraining the model. Furthermore, the model using the constrained parameters generated divergent future soil C dynamics. Compared with the predictions using the presupposed real parameters (i.e., the real future C dynamics), the percentage uncertainty in 100-yr predictions using the constrained parameters was up to 45% depending on global change scenarios and data availability for model-constraining. Such great uncertainty was mainly due to the high collinearity among the model parameters. Using pool-based models, we argue that soil C pool size, k, and/or e and their responses to global change have to be estimated explicitly and empirically, rather than through model-fitting, in order to accurately predict C dynamics and infer underlying mechanisms. The OSSE approach provides a powerful way to identify data requirement for the new generation of model development and test model performance.

摘要

基于库的碳(C)模型被广泛应用于预测全球变化下土壤 C 动态,并推断其潜在机制。然而,由于模型约束通常仅使用总 C 的批量数据,因此对于模型预测的 C 库大小、衰减率(k)和/或微生物 C 利用效率(e)的可信度仍不清楚。通过观测系统模拟实验(OSSE),我们根据土壤 C 动态对变暖及升高 CO(即全球变化情景)的响应的假设,使用总土壤 C 动态的模拟数据集来约束双库模型。结果表明,在所有全球变化情景下,模型对 C 库大小、k 和 e 的预测都存在较大的不确定性,从而难以正确推断用于生成模拟总土壤 C 以约束模型的那些参数的预设“真实”值。此外,使用约束参数的模型产生了不同的未来土壤 C 动态。与使用预设真实参数(即真实未来 C 动态)的预测相比,使用约束参数的 100 年预测的不确定性百分比高达 45%,具体取决于全球变化情景和模型约束的数据可用性。这种较大的不确定性主要是由于模型参数之间的高度共线性。我们认为,基于库的模型必须通过显式和经验方法来估计 C 库大小、k 和/或 e 及其对全球变化的响应,而不是通过模型拟合,以便准确预测 C 动态并推断潜在机制。OSSE 方法提供了一种识别新一代模型开发数据需求和测试模型性能的有力方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验