Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
University of the Chinese Academy of Sciences, Beijing, 100049, China.
Sci Rep. 2019 Aug 16;9(1):11950. doi: 10.1038/s41598-019-48492-8.
Castor bean (Ricinus communis L., Euphorbiaceae) is a critical biodiesel crop and its seed derivatives have important industrial applications. Due to lack of a high-density genetic map, the breeding and genetic improvement of castor bean has been largely restricted. In this study, based on a recombinant inbred line (RIL) population consisting of 200 individuals, we generated 8,896 high-quality genomic SNP markers and constructed a high-resolution genetic map with 10 linkage groups (LGs), spanning 1,852.33 centiMorgan (cM). Based on the genetic map, 996 scaffolds from the draft reference genome were anchored onto 10 pseudo-chromosomes, covering 84.43% of the castor bean genome. Furthermore, the quality of the pseudo-chromosome scale assembly genome was confirmed via genome collinearity analysis within the castor bean genome as well as between castor bean and cassava. Our results provide new evidence that the phylogenetic position of castor bean is relatively solitary from other taxa in the Euphorbiaceae family. Based on the genetic map, we identified 16 QTLs that control seed size and weight (covering 851 candidate genes). The findings will be helpful for further research into potential new mechanisms controlling seed size and weight in castor bean. The genetic map and improved pseudo-chromosome scale genome provide crucial foundations for marker-assisted selection (MAS) of QTL governing important agronomic traits, as well as the accelerated molecular breeding of castor bean in a cost-effective pattern.
蓖麻(Ricinus communis L.,大戟科)是一种重要的生物柴油作物,其种子衍生产品具有重要的工业应用。由于缺乏高密度遗传图谱,蓖麻的育种和遗传改良在很大程度上受到限制。在这项研究中,基于由 200 个个体组成的重组自交系(RIL)群体,我们生成了 8896 个高质量的基因组 SNP 标记,并构建了一个具有 10 个连锁群(LGs)的高分辨率遗传图谱,覆盖 1852.33 厘摩(cM)。基于遗传图谱,将来自草案参考基因组的 996 个支架锚定到 10 个假染色体上,覆盖了蓖麻基因组的 84.43%。此外,通过在蓖麻基因组内以及在蓖麻和木薯之间进行基因组共线性分析,证实了假染色体规模组装基因组的质量。我们的结果提供了新的证据,表明蓖麻在大戟科家族中的系统发育位置相对孤立。基于遗传图谱,我们鉴定了 16 个控制种子大小和重量的 QTL(涵盖 851 个候选基因)。这些发现将有助于进一步研究控制蓖麻种子大小和重量的潜在新机制。遗传图谱和改进的假染色体规模基因组为控制重要农艺性状的 QTL 的标记辅助选择(MAS)以及以具有成本效益的模式加速蓖麻的分子育种提供了关键基础。