Wang Zaiqing, Kuang Jingge, Han Bing, Chen Suiyun, Liu Aizhong
College of Life Sciences, Yunnan University, Kunming, 650091, China.
Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
Plant Divers. 2020 Aug 14;43(2):152-162. doi: 10.1016/j.pld.2020.07.010. eCollection 2021 Apr.
Stress-associated proteins (SAPs) are known as response factors to multiple abiotic and biotic stresses in plants. However, the potential physiological and molecular functions of SAPs remain largely unclear. Castor bean ( L.) is one of the most economically valuable non-edible woody oilseed crops, able to be widely cultivated in marginal lands worldwide because of its broad adaptive capacity to soil and climate conditions. Whether SAPs in castor bean plays a key role in adapting diverse soil conditions and stresses remains unknown. In this study, we used the castor bean genome to identify and characterize nine castor bean genes (). Structural analysis showed that castor bean gene structures and functional domain types vary greatly, differing in intron number, protein sequence, and functional domain type. Notably, the AN1-C2H2-C2H2 zinc finger domain within RcSAP9 has not been often observed in other plant families. High throughput RNA-seq data showed that castor bean gene profiles varied among different tissues. In addition, castor bean gene expression varied in response to different stresses, including salt, drought, heat, cold and ABA and MeJA, suggesting that the transcriptional regulation of castor bean genes might operate independently of each other, and at least partially independent from ABA and MeJA signal pathways. -element analyses for each castor bean gene showed that no common -elements are shared across the nine castor bean genes. Castor bean SAPs were localized to different regions of cells, including the cytoplasm, nucleus, and cytomembrane. This study provides a comprehensive profile of castor bean genes that advances our understanding of their potential physiological and molecular functions in regulating growth and development and their responses to different abiotic stresses.
胁迫相关蛋白(SAPs)是植物中对多种非生物和生物胁迫的响应因子。然而,SAPs潜在的生理和分子功能仍 largely不清楚。蓖麻(Ricinus communis L.)是最具经济价值的非食用木本油料作物之一,由于其对土壤和气候条件具有广泛的适应能力,能够在全球边缘土地上广泛种植。蓖麻中的SAPs是否在适应不同土壤条件和胁迫中起关键作用仍不清楚。在本研究中,我们利用蓖麻基因组鉴定并表征了9个蓖麻RcSAP基因(RcSAP1 - RcSAP9)。结构分析表明,蓖麻RcSAP基因结构和功能域类型差异很大,在内含子数量、蛋白质序列和功能域类型方面均有所不同。值得注意的是,RcSAP9中的AN1 - C2H2 - C2H2锌指结构域在其他植物家族中并不常见。高通量RNA - seq数据表明,蓖麻RcSAP基因在不同组织中的表达谱各不相同。此外,蓖麻RcSAP基因表达在响应不同胁迫时会发生变化,包括盐、干旱、热、冷以及ABA和MeJA,这表明蓖麻RcSAP基因的转录调控可能彼此独立运作,并且至少部分独立于ABA和MeJA信号通路。对每个蓖麻RcSAP基因的顺式作用元件分析表明,这9个蓖麻RcSAP基因之间没有共同的顺式作用元件。蓖麻SAPs定位于细胞的不同区域,包括细胞质、细胞核和细胞膜。本研究提供了蓖麻RcSAP基因的全面概况,增进了我们对其在调节生长发育以及对不同非生物胁迫响应中潜在生理和分子功能的理解。