Suppr超能文献

用于柔性有机太阳能电池从实验室到规模化生产转化的通用方法。

A General Approach for Lab-to-Manufacturing Translation on Flexible Organic Solar Cells.

机构信息

College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

出版信息

Adv Mater. 2019 Oct;31(41):e1903649. doi: 10.1002/adma.201903649. Epub 2019 Aug 18.

Abstract

The blossoming of organic solar cells (OSCs) has triggered enormous commercial applications, due to their high-efficiency, light weight, and flexibility. However, the lab-to-manufacturing translation of the praisable performance from lab-scale devices to industrial-scale modules is still the Achilles' heel of OSCs. In fact, it is urgent to explore the mechanism of morphological evolution in the bulk heterojunction (BHJ) with different coating/printing methods. Here, a general approach to upscale flexible organic photovoltaics to module scale without obvious efficiency loss is demonstrated. The shear impulse during the coating/printing process is first applied to control the morphology evolution of the BHJ layer for both fullerene and nonfullerene acceptor systems. A quantitative transformation factor of shear impulse between slot-die printing and spin-coating is detected. Compelling results of morphological evolution, molecular stacking, and coarse-grained molecular simulation verify the validity of the impulse translation. Accordingly, the efficiency of flexible devices via slot-die printing achieves 9.10% for PTB7-Th:PC BM and 9.77% for PBDB-T:ITIC based on 1.04 cm . Furthermore, 15 cm flexible modules with effective efficiency up to 7.58% (PTB7-Th:PC BM) and 8.90% (PBDB-T:ITIC) are demonstrated with satisfying mechanical flexibility and operating stability. More importantly, this work outlines the shear impulse translation for organic printing electronics.

摘要

有机太阳能电池(OSC)的蓬勃发展因其高效率、重量轻和灵活性而引发了巨大的商业应用。然而,将实验室设备的优良性能转化为工业规模模块的过程仍然是 OSC 的阿喀琉斯之踵。事实上,迫切需要探索具有不同涂布/印刷方法的体异质结(BHJ)中形态演变的机制。在这里,展示了一种将柔性有机光伏从实验室规模扩展到模块规模而不会明显降低效率的通用方法。在涂布/印刷过程中首先施加剪切冲击,以控制富勒烯和非富勒烯受体体系的 BHJ 层的形态演变。检测到狭缝涂布和旋涂之间剪切冲击的定量转换因子。形态演变、分子堆积和粗粒度分子模拟的引人注目的结果验证了冲击传递的有效性。因此,通过狭缝涂布印刷的柔性器件的效率达到 9.10%(PTB7-Th:PC71BM)和 9.77%(PBDB-T:ITIC),基于 1.04 cm2。此外,展示了具有有效效率高达 7.58%(PTB7-Th:PC71BM)和 8.90%(PBDB-T:ITIC)的 15 cm 柔性模块,具有令人满意的机械灵活性和工作稳定性。更重要的是,这项工作概述了用于有机印刷电子的剪切冲击传递。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验