Vohra Varun, Matsunaga Yumi, Takada Tomoaki, Kiyokawa Ayumu, Barba Luisa, Porzio William
Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
Istituto di Cristallografia del CNR - c/o Sincrotrone Elettra, Strada Statale 14-Km, 163, 5 Area Science Park, Basovizza, Trieste, 34142, Italy.
Small. 2021 Jan;17(2):e2004168. doi: 10.1002/smll.202004168. Epub 2020 Dec 16.
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
进行了一项系统研究,以比较采用高性能电子供体(PBDB-T)与最先进的富勒烯(PC BM)、非富勒烯(ITIC)和聚合物(N2200)电子受体的活性层的性能和稳定性。通过在有氧的光照或黑暗条件下监测其光伏性能,阐明了受体化学性质对有机太阳能电池(OSC)耐久性的影响。与非富勒烯受体相比,PC BM分子表现出更高的抗氧化性。未封装的PBDB-T:PC BM OSC在室温下空气中储存3个月时表现出相对稳定的性能。然而,当暴露在80°C以上的温度下时,它们的活性材料会发生分层,导致短路密度显著降低。对于120°C以上的PBDB-T:ITIC活性层,也可以看到这种有害的分层现象。尽管N2200链在暴露于空气时会不可逆地降解,但在高达200°C退火的PBDB-T:N2200活性层中不会发生热诱导分层。总之,富勒烯OSC可能是目前未封装室温应用的最佳选择,但如果能够避免聚合物受体的氧化,所有聚合物活性层都应能够制造出具有与OSC商业化要求相匹配的寿命的高度耐用的OSC。