Cheng Chaoqun, Akram Muhammad Nadeem, Nilsen Ola, Pryds Nini, Wang Kaiying
Department of Microsystems, University of South-Eastern Norway, Raveien 215, 3184 Horten, Norway.
Department of Chemistry, University of Oslo, Postboks 1033, 0315 Oslo, Norway.
Phys Chem Chem Phys. 2020 Apr 15;22(15):7769-7777. doi: 10.1039/d0cp00672f.
Plasmon-enhanced harvesting of photons has contributed to the photochemical conversion and storage of solar energy. However, high dependence on noble metals and weak coupling in heterostructures constrain the progress towards sustainable plasmonic enhancement. Here earth-abundant Ti is studied to achieve the plasmonic enhancement of catalytic activity in a solar-driven heterostructure Ti/TiO2-x. The heterostructure was fabricated by engineering an intense coupling of a surface-etched Ti metal and a gradient-based TiO2-x dielectric via diffusion doping. Ti/TiO2-x exhibits a highly resonant light absorption band associated with surface plasmon resonances that exhibit strong near-field enhancement (NFE) and hot electron injection effects. In a photoelectrochemical system, intense interaction of the resonant plasmons with a vicinal TiO2-x dielectric accelerates the transfer of solar energy to charge carriers for plasmon-enhanced water splitting reactions. Moreover, the plasmonic Ti/TiO2-x structure presents sustained enhanced redox activities over 100 h. The intense coupling by gradient doping offers an effective approach to enable the plasmon resonances of Ti excited by visible light. The Ti-based plasmonic heterostructure potentially opens an alternative avenue towards sustainable plasmon-enhanced catalysis.
等离子体增强光子捕获有助于太阳能的光化学转换和存储。然而,对贵金属的高度依赖以及异质结构中的弱耦合限制了可持续等离子体增强的进展。在此,研究了储量丰富的钛,以在太阳能驱动的异质结构Ti/TiO₂₋ₓ中实现催化活性的等离子体增强。该异质结构是通过扩散掺杂对表面蚀刻的钛金属和基于梯度的TiO₂₋ₓ电介质进行强耦合而制备的。Ti/TiO₂₋ₓ表现出与表面等离子体共振相关的高共振光吸收带,该共振表现出强烈的近场增强(NFE)和热电子注入效应。在光电化学系统中,共振等离子体与邻近的TiO₂₋ₓ电介质的强烈相互作用加速了太阳能向电荷载流子的转移,以进行等离子体增强的水分解反应。此外,等离子体Ti/TiO₂₋ₓ结构在100小时内呈现出持续增强的氧化还原活性。通过梯度掺杂的强耦合提供了一种有效的方法来使钛的等离子体共振由可见光激发。基于钛的等离子体异质结构可能为可持续的等离子体增强催化开辟一条替代途径。