Chen Qiang, Shi Huihui, Sun Mingxuan
IEEE Trans Cybern. 2020 Jul;50(7):3009-3022. doi: 10.1109/TCYB.2019.2931877. Epub 2019 Aug 16.
In this article, an echo state network (ESN)-based backstepping adaptive iterative learning control scheme is proposed for nonlinear strict-feedback systems performing the same operation repeatedly over a finite-time interval. Different from most of the output tracking approaches, an error-tracking approach is presented using the backstepping technique, such that the tracking error can follow a prespecified error trajectory without any requirement on the initial value of system states. Then, a novel Lyapunov function is constructed to deal with the unknown state-dependent gain function of the controller design. The uncertain nonlinearities are approximated by employing ESNs with simple feedback structures, and the weight update laws are developed by combining the parameter adaptation in the time domain and iteration domain. Moreover, the proposed control scheme is further extended to handle the strict-feedback systems with input saturations. Through the Lyapunov-like synthesis, the closed-loop stability and error convergence of the proposed error-tracking control scheme are analyzed in the presence of the approximation errors. Numerical simulations are provided to verify the effectiveness of the proposed scheme.
在本文中,针对在有限时间间隔内反复执行相同操作的非线性严格反馈系统,提出了一种基于回声状态网络(ESN)的反步自适应迭代学习控制方案。与大多数输出跟踪方法不同,采用反步技术提出了一种误差跟踪方法,使得跟踪误差能够跟踪预先指定的误差轨迹,而对系统状态的初始值没有任何要求。然后,构造了一种新颖的李雅普诺夫函数来处理控制器设计中未知的状态依赖增益函数。利用具有简单反馈结构的回声状态网络对不确定非线性进行逼近,并通过结合时域和迭代域中的参数自适应来推导权重更新律。此外,所提出的控制方案进一步扩展以处理具有输入饱和的严格反馈系统。通过类李雅普诺夫综合方法,在存在逼近误差的情况下,分析了所提出的误差跟踪控制方案的闭环稳定性和误差收敛性。提供了数值仿真以验证所提方案的有效性。