Suppr超能文献

神经祖细胞的生物物理和生物力学特性作为发育神经毒性的指标。

Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity.

机构信息

Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA.

出版信息

Arch Toxicol. 2019 Oct;93(10):2979-2992. doi: 10.1007/s00204-019-02549-9. Epub 2019 Aug 19.

Abstract

Conventional in vitro toxicity studies have focused on identifying IC and the underlying mechanisms, but how toxicants influence biophysical and biomechanical changes in human cells, especially during developmental stages, remain understudied. Here, using an atomic force microscope, we characterized changes in biophysical (cell area, actin organization) and biomechanical (Young's modulus, force of adhesion, tether force, membrane tension, tether radius) aspects of human fetal brain-derived neural progenitor cells (NPCs) induced by four classes of widely used toxic compounds, including rotenone, digoxin, N-arachidonoylethanolamide (AEA), and chlorpyrifos, under exposure up to 36 h. The sub-cellular mechanisms (apoptosis, mitochondria membrane potential, DNA damage, glutathione levels) by which these toxicants induced biochemical changes in NPCs were assessed. Results suggest a significant compromise in cell viability with increasing toxicant concentration (p < 0.01), and biophysical and biomechanical characteristics with increasing exposure time (p < 0.01) as well as toxicant concentration (p < 0.01). Impairment of mitochondrial membrane potential appears to be the most sensitive mechanism of neurotoxicity for rotenone, AEA and chlorpyrifos exposure, but compromise in plasma membrane integrity for digoxin exposure. The surviving NPCs remarkably retained stemness (SOX2 expression) even at high toxicant concentrations. A negative linear correlation (R = 0.92) exists between the elastic modulus of surviving cells and the number of living cells in that environment. We propose that even subtle compromise in cell mechanics could serve as a crucial marker of developmental neurotoxicity (mechanotoxicology) and therefore should be included as part of toxicology assessment repertoire to characterize as well as predict developmental outcomes.

摘要

传统的体外毒性研究侧重于识别 IC 和潜在机制,但毒物如何影响人体细胞的生物物理和生物力学变化,尤其是在发育阶段,这方面的研究仍不够充分。在这里,我们使用原子力显微镜,表征了四类广泛使用的有毒化合物(鱼藤酮、地高辛、N-花生四烯酰乙醇胺和毒死蜱)暴露 36 小时内对人胎儿脑源性神经祖细胞(NPC)的生物物理(细胞面积、肌动蛋白组织)和生物力学(杨氏模量、粘附力、系链力、膜张力、系链半径)方面的变化。评估了这些有毒物质引起 NPC 生化变化的亚细胞机制(细胞凋亡、线粒体膜电位、DNA 损伤、谷胱甘肽水平)。结果表明,随着有毒物质浓度的增加(p<0.01),细胞活力显著下降,随着暴露时间的增加(p<0.01)和有毒物质浓度的增加(p<0.01),生物物理和生物力学特征也显著下降。线粒体膜电位的损伤似乎是鱼藤酮、N-花生四烯酰乙醇胺和毒死蜱暴露引起神经毒性的最敏感机制,但地高辛暴露则损伤质膜完整性。存活的 NPC 令人惊讶地保持了干性(SOX2 表达),即使在高有毒物质浓度下也是如此。存活细胞的弹性模量与该环境中活细胞的数量之间存在负线性相关关系(R=0.92)。我们提出,即使细胞力学有细微的损伤,也可以作为发育神经毒性(机械毒理学)的关键标志物,因此应作为毒理学评估的一部分,以表征和预测发育结果。

相似文献

引用本文的文献

本文引用的文献

7
Alterations of biomechanics in cancer and normal cells induced by doxorubicin.阿霉素诱导的癌细胞和正常细胞生物力学的改变。
Biomed Pharmacother. 2018 Jan;97:1195-1203. doi: 10.1016/j.biopha.2017.11.040. Epub 2017 Nov 11.
8
The immune response to secondary necrotic cells.对继发性坏死细胞的免疫反应。
Apoptosis. 2017 Oct;22(10):1189-1204. doi: 10.1007/s10495-017-1413-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验