Suppr超能文献

比较中国江西省集水区尺度的三维和二维半土壤有机碳储量模型。

Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China.

机构信息

Chair of Soil Science and Geomorphology, Department of Geosciences, University of Tübingen, Tübingen, Germany.

SFB 1070 ResourceCultures, University of Tübingen, Tübingen, Germany.

出版信息

PLoS One. 2019 Aug 20;14(8):e0220881. doi: 10.1371/journal.pone.0220881. eCollection 2019.

Abstract

As limited resources, soils are the largest terrestrial sinks of organic carbon. In this respect, 3D modelling of soil organic carbon (SOC) offers substantial improvements in the understanding and assessment of the spatial distribution of SOC stocks. Previous three-dimensional SOC modelling approaches usually averaged each depth increment for multi-layer two-dimensional predictions. Therefore, these models are limited in their vertical resolution and thus in the interpretability of the soil as a volume as well as in the accuracy of the SOC stock predictions. So far, only few approaches used spatially modelled depth functions for SOC predictions. This study implemented and evaluated an approach that compared polynomial, logarithmic and exponential depth functions using non-linear machine learning techniques, i.e. multivariate adaptive regression splines, random forests and support vector machines to quantify SOC stocks spatially and depth-related in the context of biodiversity and ecosystem functioning research. The legacy datasets used for modelling include profile data for SOC and bulk density (BD), sampled at five depth increments (0-5, 5-10, 10-20, 20-30, 30-50 cm). The samples were taken in an experimental forest in the Chinese subtropics as part of the biodiversity and ecosystem functioning (BEF) China experiment. Here we compared the depth functions by means of the results of the different machine learning approaches obtained based on multi-layer 2D models as well as 3D models. The main findings were (i) that 3rd degree polynomials provided the best results for SOC and BD (R2 = 0.99 and R2 = 0.98; RMSE = 0.36% and 0.07 g cm-3). However, they did not adequately describe the general asymptotic trend of SOC and BD. In this respect the exponential (SOC: R2 = 0.94; RMSE = 0.56%) and logarithmic (BD: R2 = 84; RMSE = 0.21 g cm-3) functions provided more reliable estimates. (ii) random forests with the exponential function for SOC correlated better with the corresponding 2.5D predictions (R2: 0.96 to 0.75), compared to the 3rd degree polynomials (R2: 0.89 to 0.15) which support vector machines fitted best. We recommend not to use polynomial functions with sparsely sampled profiles, as they have many turning points and tend to overfit the data on a given profile. This may limit the spatial prediction capacities. Instead, less adaptive functions with a higher degree of generalisation such as exponential and logarithmic functions should be used to spatially map sparse vertical soil profile datasets. We conclude that spatial prediction of SOC using exponential depth functions, in conjunction with random forests is well suited for 3D SOC stock modelling, and provides much finer vertical resolutions compared to 2.5D approaches.

摘要

作为有限的资源,土壤是最大的陆地有机碳汇。在这方面,土壤有机碳(SOC)的三维建模为理解和评估 SOC 储量的空间分布提供了实质性的改进。以前的三维 SOC 建模方法通常对多层二维预测进行平均每个深度增量。因此,这些模型在垂直分辨率方面存在局限性,因此在解释土壤作为体积以及 SOC 储量预测的准确性方面也存在局限性。到目前为止,只有少数方法使用空间建模的深度函数来预测 SOC。本研究实施并评估了一种方法,该方法使用非线性机器学习技术(即多元自适应回归样条、随机森林和支持向量机)比较多项式、对数和指数深度函数,以在生物多样性和生态系统功能研究的背景下对 SOC 储量进行空间和深度相关的量化。用于建模的遗留数据集包括在亚热带中国的一个实验林中以五个深度增量(0-5、5-10、10-20、20-30 和 30-50 cm)采样的 SOC 和体密度(BD)的剖面数据。这些样本是作为生物多样性和生态系统功能(BEF)中国实验的一部分采集的。在这里,我们通过基于多层 2D 模型和 3D 模型获得的不同机器学习方法的结果来比较深度函数。主要发现是:(i)三阶多项式为 SOC 和 BD 提供了最佳结果(R2=0.99 和 R2=0.98;RMSE=0.36%和 0.07 g cm-3)。然而,它们不能充分描述 SOC 和 BD 的一般渐近趋势。在这方面,指数(SOC:R2=0.94;RMSE=0.56%)和对数(BD:R2=84;RMSE=0.21 g cm-3)函数提供了更可靠的估计。(ii)与三阶多项式(R2:0.89 至 0.15)相比,随机森林与 SOC 的指数函数的相关性更好,随机森林与对应的 2.5D 预测(R2:0.96 至 0.75),而支持向量机则最适合拟合。我们建议不要在稀疏采样的剖面中使用多项式函数,因为它们有许多转折点,并且容易在给定的剖面中过度拟合数据。这可能会限制空间预测能力。相反,应该使用具有更高泛化程度的不太自适应的函数,例如指数和对数函数,以对稀疏垂直土壤剖面数据集进行空间映射。我们得出的结论是,使用指数深度函数结合随机森林进行 SOC 的空间预测非常适合 3D SOC 储量建模,与 2.5D 方法相比,它提供了更高的垂直分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b6f/6701766/3ae109fa4995/pone.0220881.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验