School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China.
Department of Mathematics, Hubei University for Nationalities, Enshi 445000, People's Republic of China.
J R Soc Interface. 2019 Aug 30;16(157):20190468. doi: 10.1098/rsif.2019.0468. Epub 2019 Aug 21.
Hormesis, a phenomenon whereby exposure to high levels of stressors is inhibitory but low (mild, sublethal and subtoxic) doses are stimulatory, challenges decision-making in the management of cancer, neurodegenerative diseases, nutrition and ecotoxicology. In the latter, increasing amounts of a pesticide may lead to upsurges rather than declines of pests, ecological paradoxes that are difficult to predict. Using a novel re-formulation of the Ricker population equation, we show how interactions between intervention strengths and dose timings, dose-response functions and intrinsic factors can model such paradoxes and hormesis. A model with three critical parameters revealed hormetic biphasic dose and dose timing responses, either in a J-shape or an inverted U-shape, yielding a homeostatic change or a catastrophic shift and hormetic effects in many parameter regions. Such effects were enhanced by repeated pulses of low-level stimulations within one generation at different dose timings, thereby reducing threshold levels, maximum responses and inhibition. The model provides insights into the complex dynamics of such systems and a methodology for improved experimental design and analysis, with wide-reaching implications for understanding hormetic effects in ecology and in medical and veterinary treatment decision-making. We hypothesized that the dynamics of a discrete generation pest control system can be determined by various three-parameter spaces, some of which reveal the conditions for occurrence of hormesis, and confirmed this by fitting our model to both hormetic data from the literature and to a non-hormetic dataset on pesticidal control of mirid bugs in cotton.
胁迫兴奋效应(Hormesis)是一种现象,即暴露于高水平的应激源会产生抑制作用,但低(温和、亚致死和亚毒性)剂量则具有刺激作用,这对癌症、神经退行性疾病、营养和生态毒理学的管理决策提出了挑战。在后一种情况下,杀虫剂使用量的增加可能会导致害虫数量的增加,而不是减少,这种生态悖论很难预测。我们使用一种新的里卡尔种群方程重新表述,展示了干预强度与剂量时间、剂量-反应函数和内在因素之间的相互作用如何模拟这些悖论和胁迫兴奋效应。一个具有三个关键参数的模型揭示了具有双相剂量和剂量时间反应的胁迫兴奋效应,呈 J 形或倒 U 形,导致体内平衡变化或灾难性转变,以及在许多参数区域的胁迫兴奋效应。在不同的剂量时间下,在同一代内重复进行低水平刺激脉冲,会增强这种效应,从而降低阈值水平、最大响应和抑制作用。该模型深入了解了这些系统的复杂动态,以及改进实验设计和分析的方法,对理解生态学和医学、兽医治疗决策中的胁迫兴奋效应具有广泛的意义。我们假设,一个具有离散世代的害虫控制系统的动力学可以由各种三参数空间来确定,其中一些空间揭示了胁迫兴奋效应发生的条件,并通过将我们的模型拟合到文献中的胁迫兴奋效应数据以及棉花中棉盲蝽的杀虫剂控制的非胁迫兴奋效应数据集来证实了这一点。