Suppr超能文献

预测直肠癌放化疗的肿瘤反应:基于 MRI 影像组学的模型建立和外部验证。

Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics.

机构信息

Department of Radiation Oncology, University Hospitals Leuven, Belgium.

Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands.

出版信息

Radiother Oncol. 2020 Jan;142:246-252. doi: 10.1016/j.radonc.2019.07.033. Epub 2019 Aug 17.

Abstract

BACKGROUND

In well-responding patients to chemoradiotherapy for locally advanced rectal cancer (LARC), a watch-and-wait strategy can be considered. To implement organ-sparing strategies, accurate patient selection is needed. We investigate the use of MRI-based radiomics models to predict tumor response to improve patient selection.

MATERIALS AND METHODS

Models were developed in a cohort of 70 patients and validated in an external cohort of 55 patients. Patients received chemoradiation followed by surgery and underwent T2-weighted and diffusion-weighted MRI (DW-MRI) before and after chemoradiation. The outcome measure was (near-)complete pathological tumor response (ypT0-1N0). Tumor segmentation was done on T2-images and transferred to b800-images and ADC maps, after which quantitative and four semantic features were extracted. We combined features using principal component analysis and built models using LASSO regression analysis. The best models based on precision and performance were selected for validation.

RESULTS

21/70 patients (30%) achieved ypT0-1N0 in the development cohort versus 13/55 patients (24%) in the validation cohort. Three models (t2_dwi_pre_post, semantic_dwi_adc_pre, semantic_dwi_post) were identified with an area-under-the-curve (AUC) of 0.83 (95% CI 0.70-0.95), 0.86 (95% CI 0.75-0.98) and 0.84 (95% CI 0.75-0.94) respectively. Two models (t2_dwi_pre_post, semantic_dwi_post) validated well in the external cohort with AUCs of 0.83 (95% CI 0.70-0.95) and 0.86 (95% CI 0.76-0.97). These models however did not outperform a previously established four-feature semantic model.

CONCLUSION

Prediction models based on MRI radiomics non-invasively predict tumor response after chemoradiation for rectal cancer and can be used as an additional tool to identify patients eligible for an organ-preserving treatment.

摘要

背景

在接受放化疗的局部晚期直肠癌(LARC)患者中,可考虑采用观察等待策略。为了实施保器官策略,需要对患者进行准确的选择。我们研究了使用基于 MRI 的放射组学模型来预测肿瘤对放化疗的反应,以改善患者选择。

材料与方法

在 70 例患者的队列中开发模型,并在 55 例外部队列中验证。患者接受放化疗,然后进行手术,并在放化疗前后进行 T2 加权和弥散加权 MRI(DW-MRI)。主要终点是(接近)完全病理性肿瘤反应(ypT0-1N0)。在 T2 图像上进行肿瘤分割,并转移到 b800 图像和 ADC 图上,然后提取定量和四个语义特征。我们使用主成分分析(PCA)组合特征,并使用 LASSO 回归分析构建模型。选择最佳的基于精度和性能的模型进行验证。

结果

在开发队列中,21/70 例(30%)患者达到 ypT0-1N0,而在验证队列中,13/55 例(24%)患者达到 ypT0-1N0。确定了三个模型(t2_dwi_pre_post、semantic_dwi_adc_pre、semantic_dwi_post),其 AUC 分别为 0.83(95%CI 0.70-0.95)、0.86(95%CI 0.75-0.98)和 0.84(95%CI 0.75-0.94)。两个模型(t2_dwi_pre_post、semantic_dwi_post)在外部队列中得到很好的验证,AUC 分别为 0.83(95%CI 0.70-0.95)和 0.86(95%CI 0.76-0.97)。然而,这些模型并没有超过之前建立的四个特征语义模型。

结论

基于 MRI 放射组学的预测模型可无创预测直肠癌放化疗后的肿瘤反应,可作为识别适合保器官治疗患者的附加工具。

相似文献

1
Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics.
Radiother Oncol. 2020 Jan;142:246-252. doi: 10.1016/j.radonc.2019.07.033. Epub 2019 Aug 17.
3
Development and validation of an MRI-based model to predict response to chemoradiotherapy for rectal cancer.
Radiother Oncol. 2018 Mar;126(3):437-442. doi: 10.1016/j.radonc.2018.01.008. Epub 2018 Jan 31.
4
MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
Radiology. 2022 May;303(2):351-358. doi: 10.1148/radiol.211986. Epub 2022 Feb 8.
6
Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer.
Radiother Oncol. 2017 Jul;124(1):104-109. doi: 10.1016/j.radonc.2017.06.013. Epub 2017 Jun 21.

引用本文的文献

7
Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use.
Radiol Artif Intell. 2024 Jul;6(4):e230437. doi: 10.1148/ryai.230437.

本文引用的文献

1
Predicting locally advanced rectal cancer response to neoadjuvant therapy with F-FDG PET and MRI radiomics features.
Eur J Nucl Med Mol Imaging. 2019 Apr;46(4):878-888. doi: 10.1007/s00259-018-4250-6. Epub 2019 Jan 13.
4
Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):765-774. doi: 10.1016/j.ijrobp.2018.04.065. Epub 2018 May 4.
5
MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.
Radiology. 2018 Jun;287(3):833-843. doi: 10.1148/radiol.2018172300. Epub 2018 Mar 7.
7
Development and validation of an MRI-based model to predict response to chemoradiotherapy for rectal cancer.
Radiother Oncol. 2018 Mar;126(3):437-442. doi: 10.1016/j.radonc.2018.01.008. Epub 2018 Jan 31.
9
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches.
AJNR Am J Neuroradiol. 2018 Feb;39(2):208-216. doi: 10.3174/ajnr.A5391. Epub 2017 Oct 5.
10
Magnetic Resonance Imaging Evaluation in Neoadjuvant Therapy of Locally Advanced Rectal Cancer: A Systematic Review.
Radiol Oncol. 2017 Aug 16;51(3):252-262. doi: 10.1515/raon-2017-0032. eCollection 2017 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验