Suppr超能文献

基于磁共振成像的放射组学分析预测局部晚期直肠癌患者新辅助放化疗的治疗反应及临床结局:一项大型多中心验证性研究

Magnetic resonance imaging-based radiomics analysis for prediction of treatment response to neoadjuvant chemoradiotherapy and clinical outcome in patients with locally advanced rectal cancer: A large multicentric and validated study.

作者信息

Hu TingDan, Gong Jing, Sun YiQun, Li MengLei, Cai ChongPeng, Li XinXiang, Cui YanFen, Zhang XiaoYan, Tong Tong

机构信息

Department of Radiology Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University Shanghai China.

Department of Colorectal Surgery Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University Shanghai China.

出版信息

MedComm (2020). 2024 Jun 20;5(7):e609. doi: 10.1002/mco2.609. eCollection 2024 Jul.

Abstract

Our study investigated whether magnetic resonance imaging (MRI)-based radiomics features could predict good response (GR) to neoadjuvant chemoradiotherapy (nCRT) and clinical outcome in patients with locally advanced rectal cancer (LARC). Radiomics features were extracted from the T2 weighted (T2W) and Apparent diffusion coefficient (ADC) images of 1070 LARC patients retrospectively and prospectively recruited from three hospitals. To create radiomic models for GR prediction, three classifications were utilized. The radiomic model with the best performance was integrated with important clinical MRI features to create the combined model. Finally, two clinical MRI features and ten radiomic features were chosen for GR prediction. The combined model, constructed with the tumor size, MR-detected extramural venous invasion, and radiomic signature generated by Support Vector Machine (SVM), showed promising discrimination of GR, with area under the curves of 0.799 (95% CI, 0.760-0.838), 0.797 (95% CI, 0.733-0.860), 0.754 (95% CI, 0.678-0.829), and 0.727 (95% CI, 0.641-0.813) in the training and three validation datasets, respectively. Decision curve analysis verified the clinical usefulness. Furthermore, according to Kaplan-Meier curves, patients with a high likelihood of GR as determined by the combined model had better disease-free survival than those with a low probability. This radiomics model was developed based on large-sample size, multicenter datasets, and prospective validation with high radiomics quality score, and also had clinical utility.

摘要

我们的研究调查了基于磁共振成像(MRI)的放射组学特征是否能够预测局部晚期直肠癌(LARC)患者对新辅助放化疗(nCRT)的良好反应(GR)以及临床结局。从三家医院回顾性和前瞻性招募的1070例LARC患者的T2加权(T2W)图像和表观扩散系数(ADC)图像中提取放射组学特征。为创建用于GR预测的放射组学模型,采用了三种分类方法。将性能最佳的放射组学模型与重要的临床MRI特征相结合,创建联合模型。最后,选择两个临床MRI特征和十个放射组学特征用于GR预测。由肿瘤大小、磁共振检测到的壁外静脉侵犯以及支持向量机(SVM)生成的放射组学特征构建的联合模型,在GR鉴别方面表现出良好的效果,在训练数据集和三个验证数据集中,曲线下面积分别为0.799(95%CI,0.760-0.838)、0.797(95%CI,0.733-0.860)、0.754(95%CI,0.678-0.829)和0.727(95%CI,0.641-0.813)。决策曲线分析验证了其临床实用性。此外,根据Kaplan-Meier曲线,联合模型判定为GR可能性高的患者无病生存期优于可能性低的患者。该放射组学模型基于大样本量、多中心数据集开发,并经过具有高放射组学质量评分的前瞻性验证,具有临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/11190348/6cf9fdd6a80d/MCO2-5-e609-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验