Kundrata Ivan, Fröhlich Karol, Vančo Lubomír, Mičušík Matej, Bachmann Julien
Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia.
Friedrich-Alexander University of Erlangen-Nürnberg, Dept. Chemie and Pharmacy, Chair "Chemistry of Thin Film Materials", Cauerstr. 3, 91058 Erlangen, Germany.
Beilstein J Nanotechnol. 2019 Jul 18;10:1443-1451. doi: 10.3762/bjnano.10.142. eCollection 2019.
Lithiated thin films are necessary for the fabrication of novel solid-state batteries, including the electrodes and solid electrolytes. Physical vapour deposition and chemical vapour deposition can be used to deposit lithiated films. However, the issue of conformality on non-planar substrates with large surface area makes them impractical for nanobatteries the capacity of which scales with surface area. Atomic layer deposition (ALD) avoids these issues and is able to deposit conformal films on 3D substrates. However, ALD is limited in the range of chemical reactions, due to the required volatility of the precursors. Moreover, relatively high temperatures are necessary (above 100 °C), which can be detrimental to electrode layers and substrates, for example to silicon into which the lithium can easily diffuse. In addition, several highly reactive precursors, such as Grignard reagents or -butyllithium (BuLi) are only usable in solution. In theory, it is possible to use BuLi and water in solution to produce thin films of LiH. This theoretical reaction is self-saturating and, therefore, follows the principles of solution atomic layer deposition (sALD). Therefore, in this work the sALD technique and principles have been employed to experimentally prove the possibility of LiH deposition. The formation of homogeneous air-sensitive thin films, characterized by using ellipsometry, grazing incidence X-ray diffraction (GIXRD), in situ quartz crystal microbalance, and scanning electron microscopy, was observed. Lithium hydride diffraction peaks have been observed in as-deposited films by GIXRD. X-ray photoelectron spectroscopy and Auger spectroscopy analysis show the chemical identity of the decomposing air-sensitive films. Despite the air sensitivity of BuLi and LiH, making many standard measurements difficult, this work establishes the use of sALD to deposit LiH, a material inaccessible to conventional ALD, from precursors and at temperatures not suitable for conventional ALD.
锂化薄膜对于制造新型固态电池(包括电极和固体电解质)至关重要。物理气相沉积和化学气相沉积可用于沉积锂化薄膜。然而,在具有大表面积的非平面基板上的保形性问题使得它们对于容量随表面积缩放的纳米电池不切实际。原子层沉积(ALD)避免了这些问题,并且能够在三维基板上沉积保形薄膜。然而,由于前驱体所需的挥发性,ALD在化学反应范围上受到限制。此外,需要相对较高的温度(高于100°C),这可能对电极层和基板有害,例如对锂可轻易扩散进去的硅有害。此外,几种高活性前驱体,如格氏试剂或丁基锂(BuLi)仅可在溶液中使用。理论上,有可能在溶液中使用BuLi和水来制备LiH薄膜。这种理论反应是自饱和的,因此遵循溶液原子层沉积(sALD)的原理。因此,在这项工作中,采用了sALD技术和原理来通过实验证明沉积LiH的可能性。观察到形成了均匀的对空气敏感的薄膜,通过椭偏仪、掠入射X射线衍射(GIXRD)、原位石英晶体微天平以及扫描电子显微镜对其进行了表征。通过GIXRD在沉积态薄膜中观察到了氢化锂衍射峰。X射线光电子能谱和俄歇能谱分析显示了分解的对空气敏感薄膜的化学特性。尽管BuLi和LiH对空气敏感,使得许多标准测量变得困难,但这项工作确立了使用sALD从前驱体在不适合传统ALD的温度下沉积LiH(一种传统ALD无法获得的材料)。