Cao Yuanyuan, Zhu Sha, Bachmann Julien
Chemistry of Thin Film Materials (CTFM), Interdisciplinary Center of Nanostructured Films (IZNF), Friedrich Alexander University of Erlangen-Nuremberg, Cauerstr. 3, 91058 Erlangen, Germany.
Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russia.
Dalton Trans. 2021 Sep 28;50(37):13066-13072. doi: 10.1039/d1dt01232k.
As a member of the two-dimensional metal dichalcogenide family, HfS has emerged as a promising material for various optoelectronic applications. Atomic layer deposition is widely used in microelectronics manufacturing with unique properties in terms of accurate thickness control and high conformality. In this work, a simple and versatile method based on the atomic layer deposition principles is presented to generate hafnium disulfide from the solution phase ('solution ALD' or sALD). For ease of comparison with the traditional gaseous atomic layer deposition (gALD) method, the same precursors are used, namely tetrakis-(dimethylamido) hafnium(IV) and HS. The deposit is characterized on several different oxide substrates by spectroscopic ellipsometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. In the saturated regime, the growth rate depends on the substrate nature and is between 0.4 and 0.6 Å per sALD cycle. This growth rate determined at room temperature is lower than with the gALD process reported at 100 °C recently. At those low deposition temperatures, the films remain in an amorphous state. This success in sALD expands the range of material classes available by the new method, adding transition metal dichalcogenides to the list containing oxides, cubic sulfides, hydrides, and organics so far. It promises to overcome the precursor constraints associated with the traditional gALD method, in particular the volatility requirement.
作为二维金属二硫属化物家族的一员,HfS已成为一种在各种光电子应用中颇具潜力的材料。原子层沉积因其在精确厚度控制和高保形性方面的独特性能而广泛应用于微电子制造。在这项工作中,我们提出了一种基于原子层沉积原理的简单通用方法,用于从溶液相中生成二硫化铪(“溶液原子层沉积”或sALD)。为便于与传统的气相原子层沉积(gALD)方法进行比较,我们使用了相同的前驱体,即四(二甲基氨基)铪(IV)和HS。通过光谱椭偏仪、扫描电子显微镜和X射线光电子能谱对在几种不同氧化物衬底上的沉积物进行了表征。在饱和状态下,生长速率取决于衬底性质,每个sALD循环在0.4至0.6 Å之间。在室温下测定的这种生长速率低于最近报道的在100°C下的gALD工艺的生长速率。在这些低沉积温度下,薄膜保持非晶态。sALD的这一成功扩展了新方法可获得的材料种类范围,使过渡金属二硫属化物加入到迄今为止包含氧化物、立方硫化物、氢化物和有机物的列表中。它有望克服与传统gALD方法相关的前驱体限制,特别是挥发性要求。