Suppr超能文献

MEXCOwalk:基于互斥和覆盖的随机游走算法识别癌症模块。

MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules.

机构信息

Electrical and Computer Engineering Graduate Program, Department of Computer Engineering, Antalya Bilim University, Antalya 07190, Turkey.

Department of Computer Engineering, Antalya Bilim University, Antalya 07190, Turkey.

出版信息

Bioinformatics. 2020 Feb 1;36(3):872-879. doi: 10.1093/bioinformatics/btz655.

Abstract

MOTIVATION

Genomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing protein-protein interaction (PPI) networks together with mutation frequencies of genes and the mutual exclusivity of cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules.

RESULTS

We present a novel edge-weighted random walk-based approach that incorporates connectivity information in the form of protein-protein interactions (PPIs), mutual exclusivity and coverage to identify cancer driver modules. MEXCOwalk outperforms several state-of-the-art computational methods on TCGA pan-cancer data in terms of recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples and that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output modules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/MEXCOwalk.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

来自大型癌症队列的基因组分析揭示了突变异质性问题,这阻碍了仅基于突变谱识别驱动基因。解决这个问题的一种方法是利用基因在功能模块中共同作用的事实。现有蛋白质-蛋白质相互作用(PPI)网络中存在的连通性知识,以及基因的突变频率和癌症突变的互斥性,可以用来提高识别癌症驱动模块的准确性。

结果

我们提出了一种新颖的基于边权重随机游走的方法,该方法将连通性信息(以蛋白质-蛋白质相互作用(PPIs)、互斥性和覆盖范围的形式)纳入其中,以识别癌症驱动模块。在 TCGA 泛癌症数据中,MEXCOwalk 在恢复已知癌症基因、提供能够对正常和肿瘤样本进行分类且富含特定癌症类型突变的模块方面,优于几种最先进的计算方法。此外,用输出模块确定的风险评分可以将患者在多种癌症类型中分为低风险和高风险组。MEXCOwalk 识别出的模块包含众所周知的癌症基因和在泛癌症数据中很少突变的推定癌症基因。数据、源代码和有用的脚本可在 https://github.com/abu-compbio/MEXCOwalk 上获得。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验