Suppr超能文献

MNMO:从基于多组学数据的多层网络中发现驱动基因。

MNMO: discover driver genes from a multi-omics data based-multi-layer network.

作者信息

Deng Zheng, Wu Jingli, Chen Xiaorong, Li Gaoshi, Liu Jiafei, Hu Zhipeng, Li Rongyuan, Deng Wansu

机构信息

Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China.

College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China.

出版信息

Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf134.

Abstract

MOTIVATION

Cancer as a public health problem is driven by genomic variations in "cancer driver" genes. The identification of driver genes is critical for the discovery of key biomarkers and the development of personalized therapy.

RESULTS

We propose a prediction method MNMO: a multi-layer network model based on multi-omics data. MNMO firstly constructs a dynamically adjusted four-layer network composed of miRNAs and three kinds of genes with different features. Then three kinds of scores, i.e. control capacity, mutation score, and network score, are devised and calculated by harmonic mean to produce the integrated gene score. Experiments were performed on three kinds of real cancer data to compare the identification performance of method MNMO with that of six state-of-the-art ones. The results indicate that method MNMO presents the best identification performance under most circumstances. The genes prioritized by method MNMO not only have a better match to the benchmark ones than those identified by the other methods, but also are all associated with the development and progression of cancers. In addition, some extended versions of method MNMO can further achieve better performance on most evaluation metrics for some specific datasets. They may be more conducive to identifying tissue-specific genes, which has been verified through a number of experiments.

AVAILABILITY AND IMPLEMENTATION

The source code and the R package "MNMO" are available at https://github.com/Zheng-D/MNMO. The dataset and code are archived at https://doi.org/10.5281/zenodo.14969986.

摘要

动机

癌症作为一个公共卫生问题,是由“癌症驱动”基因中的基因组变异所驱动的。驱动基因的识别对于发现关键生物标志物和开发个性化治疗至关重要。

结果

我们提出了一种预测方法MNMO:一种基于多组学数据的多层网络模型。MNMO首先构建一个由miRNA和三种具有不同特征的基因组成的动态调整的四层网络。然后设计并通过调和平均计算三种分数,即控制能力分数、突变分数和网络分数,以产生综合基因分数。在三种真实癌症数据上进行了实验,以比较MNMO方法与六种最先进方法的识别性能。结果表明,MNMO方法在大多数情况下呈现出最佳的识别性能。MNMO方法优先排序的基因不仅比其他方法识别的基因与基准基因有更好的匹配,而且都与癌症的发生和发展相关。此外,MNMO方法的一些扩展版本在某些特定数据集的大多数评估指标上可以进一步实现更好的性能。它们可能更有利于识别组织特异性基因,这已通过大量实验得到验证。

可用性和实现方式

源代码和R包“MNMO”可在https://github.com/Zheng-D/MNMO获取。数据集和代码存档于https://doi.org/10.5281/zenodo.14969986。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dba/12033032/e3659dbcde3c/btaf134f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验