Soriano Joaquim, Mata Gadea, Megias Diego
Confocal Microscopy Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
Methods Mol Biol. 2019;2040:331-356. doi: 10.1007/978-1-4939-9686-5_15.
High-content screening (HCS) automates image acquisition and analysis in microscopy. This technology considers the multiple parameters contained in the images and produces statistically significant results. The recent improvements in image acquisition throughput, image analysis, and machine learning (ML) have popularized this kind of experiments, emphasizing the need for new tools and know-how to help in its design, analysis, and data interpretation. This chapter summarizes HCS recommendations for lab scale assays and provides both macros for HCS-oriented image analysis and user-friendly tools for data mining processes. All the steps described herein are oriented to a wide variety of image cell-based experiments. The workflows are illustrated with practical examples and test images. Their use is expected to help analyze thousands of images, create graphical representations, and apply machine learning models on HCS.
高内涵筛选(HCS)可实现显微镜图像采集与分析的自动化。该技术考虑图像中包含的多个参数,并产生具有统计学意义的结果。图像采集通量、图像分析和机器学习(ML)方面的最新进展使这类实验得到普及,凸显了对有助于其设计、分析和数据解读的新工具及专业知识的需求。本章总结了实验室规模检测的HCS建议,并提供面向HCS的图像分析宏以及用于数据挖掘过程的用户友好工具。本文所述的所有步骤均适用于各种基于细胞图像的实验。工作流程通过实际示例和测试图像进行说明。预期这些工具的使用将有助于分析数千张图像、创建图形表示,并在HCS上应用机器学习模型。