Suppr超能文献

荧光显微镜图像的快速分析与探索

Rapid analysis and exploration of fluorescence microscopy images.

作者信息

Pavie Benjamin, Rajaram Satwik, Ouyang Austin, Altschuler Jason M, Steininger Robert J, Wu Lani F, Altschuler Steven J

机构信息

Green Center for Systems Biology, UT Southwestern Medical Center.

Advanced Imaging Research Center, UT Southwestern Medical Center.

出版信息

J Vis Exp. 2014 Mar 19(85):51280. doi: 10.3791/51280.

Abstract

Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.

摘要

尽管高通量显微镜技术取得了快速进展,但基于定量图像的分析仍面临重大挑战。虽然有各种专门的图像分析工具可用,但大多数传统的基于图像分析的工作流程都有陡峭的学习曲线(用于分析参数的微调),并且在成像和分析之间导致较长的周转时间。特别是,细胞分割,即在图像中识别单个细胞的过程,在这方面是一个主要瓶颈。在这里,我们提出了一种基于PhenoRipper的替代的、无需细胞分割的工作流程,PhenoRipper是一个为快速分析和探索显微镜图像而设计的开源软件平台。这里介绍的流程针对细胞培养的免疫荧光显微镜图像进行了优化,并且需要最少的用户干预。在半小时内,PhenoRipper可以分析来自典型96孔实验的数据并生成图像轮廓。然后,用户可以直观地探索他们的数据,对他们的实验进行质量控制,确保对扰动的反应并检查重复实验的可重复性。这促进了分析和实验之间的快速反馈循环,这在分析优化过程中至关重要。该方案不仅可作为质量控制的初步分析,还可作为端到端的解决方案,特别是用于筛选。这里描述的工作流程可扩展到大数据集,如高通量筛选产生的数据集,并且已被证明可以在广泛的生物系统中准确地按表型对实验条件进行分组。PhenoBrowser界面提供了一个直观的框架来探索表型空间并将图像属性与生物学注释相关联。综上所述,这里描述的方案将降低采用基于图像的筛选定量分析的障碍。

相似文献

1
Rapid analysis and exploration of fluorescence microscopy images.
J Vis Exp. 2014 Mar 19(85):51280. doi: 10.3791/51280.
2
HCS Methodology for Helping in Lab Scale Image-Based Assays.
Methods Mol Biol. 2019;2040:331-356. doi: 10.1007/978-1-4939-9686-5_15.
4
Cytokit: a single-cell analysis toolkit for high dimensional fluorescent microscopy imaging.
BMC Bioinformatics. 2019 Sep 2;20(1):448. doi: 10.1186/s12859-019-3055-3.
5
Seeing Is Believing: Quantifying Is Convincing: Computational Image Analysis in Biology.
Adv Anat Embryol Cell Biol. 2016;219:1-39. doi: 10.1007/978-3-319-28549-8_1.
6
Which Elements to Build Co-localization Workflows? From Metrology to Analysis.
Methods Mol Biol. 2019;2040:177-213. doi: 10.1007/978-1-4939-9686-5_10.
7
STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.
BMC Bioinformatics. 2011 Apr 28;12:126. doi: 10.1186/1471-2105-12-126.
8
LOBSTER: an environment to design bioimage analysis workflows for large and complex fluorescence microscopy data.
Bioinformatics. 2020 Apr 15;36(8):2634-2635. doi: 10.1093/bioinformatics/btz945.
9
eC-CLEM: A multidimension, multimodel software to correlate intermodal images with a focus on light and electron microscopy.
Methods Cell Biol. 2017;140:335-352. doi: 10.1016/bs.mcb.2017.03.014. Epub 2017 Apr 19.
10
Multi-objective Parameter Auto-tuning for Tissue Image Segmentation Workflows.
J Digit Imaging. 2019 Jun;32(3):521-533. doi: 10.1007/s10278-018-0138-z.

引用本文的文献

1
Data-analysis strategies for image-based cell profiling.
Nat Methods. 2017 Aug 31;14(9):849-863. doi: 10.1038/nmeth.4397.
2
Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.
J Mol Biol. 2016 Sep 25;428(19):3669-82. doi: 10.1016/j.jmb.2016.07.009. Epub 2016 Jul 16.

本文引用的文献

1
PhenoRipper: software for rapidly profiling microscopy images.
Nat Methods. 2012 Jun 28;9(7):635-7. doi: 10.1038/nmeth.2097.
2
Pattern recognition software and techniques for biological image analysis.
PLoS Comput Biol. 2010 Nov 24;6(11):e1000974. doi: 10.1371/journal.pcbi.1000974.
3
Statistical and visual differentiation of subcellular imaging.
BMC Bioinformatics. 2009 Mar 22;10:94. doi: 10.1186/1471-2105-10-94.
4
Characterizing heterogeneous cellular responses to perturbations.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19306-11. doi: 10.1073/pnas.0807038105. Epub 2008 Dec 3.
5
Wndchrm - an open source utility for biological image analysis.
Source Code Biol Med. 2008 Jul 8;3:13. doi: 10.1186/1751-0473-3-13.
6
ImageJ for microscopy.
Biotechniques. 2007 Jul;43(1 Suppl):25-30. doi: 10.2144/000112517.
7
Quantitative analysis of digital microscope images.
Methods Cell Biol. 2007;81:365-96. doi: 10.1016/S0091-679X(06)81017-4.
8
CellProfiler: image analysis software for identifying and quantifying cell phenotypes.
Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100. Epub 2006 Oct 31.
9
Image calibration in fluorescence microscopy.
J Microsc. 2004 Oct;216(Pt 1):15-24. doi: 10.1111/j.0022-2720.2004.01390.x.
10
A simple technique for reducing edge effect in cell-based assays.
J Biomol Screen. 2003 Oct;8(5):566-70. doi: 10.1177/1087057103256465.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验