Kreshuk Anna, Zhang Chong
EMBL, Heidelberg, Germany.
BCN-MedTech, DTIC, Universitat Pompeu Fabra, Barcelona, Spain.
Methods Mol Biol. 2019;2040:449-463. doi: 10.1007/978-1-4939-9686-5_21.
Segmentation is one of the most ubiquitous problems in biological image analysis. Here we present a machine learning-based solution to it as implemented in the open source ilastik toolkit. We give a broad description of the underlying theory and demonstrate two workflows: Pixel Classification and Autocontext. We illustrate their use on a challenging problem in electron microscopy image segmentation. After following this walk-through, we expect the readers to be able to apply the necessary steps to their own data and segment their images by either workflow.
分割是生物图像分析中最普遍存在的问题之一。在此,我们展示一种基于机器学习的解决方案,该方案通过开源的ilastik工具包实现。我们对基础理论进行了广泛描述,并展示了两种工作流程:像素分类和自动上下文。我们通过电子显微镜图像分割中的一个具有挑战性的问题来说明它们的用法。在完成这个逐步讲解之后,我们期望读者能够将必要的步骤应用于自己的数据,并通过任何一种工作流程对其图像进行分割。