Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.
Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.
Platelets. 2021 Jan 2;32(1):54-58. doi: 10.1080/09537104.2020.1748588. Epub 2020 Apr 23.
The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmentation is performed by interactive learning and touching platelets are separated with an efficient semi-automated protocol. We also use machine learning methods to robustly automate the classification of platelets into different subtypes. These adaptable and reproducible workflows are made freely available and are implemented using the open-source software KNIME and ilastik.
通过光学显微镜评估血小板的扩展,并随后对表面积和圆度等参数进行定量分析,是许多血小板生物学家的关键检测手段。在此,我们提出了一种分析工作流程,该流程能够稳健地分割单个血小板,从而在最小化用户偏差的情况下方便对大量细胞进行分析。通过交互式学习进行图像分割,然后使用高效的半自动协议分离粘连的血小板。我们还使用机器学习方法来稳健地自动将血小板分类为不同亚型。这些具有适应性和可重复性的工作流程是免费提供的,并使用开源软件 KNIME 和 ilastik 来实现。