Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
J Mater Chem B. 2019 Aug 21;7(33):5078-5088. doi: 10.1039/c9tb00927b.
Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP-PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP-PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 μm exhibited the best hydrophilicity. For biological assays of patterned PP-PMPC/PTM/PEGDA, the micropattern size at 5 μm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.
在生物医学领域,人们迫切需要具有高生物相容性和多功能的聚合物材料。聚合物材料的疏水性表面和惰性特性通常会遇到严重的生物污垢和细菌感染,这阻碍了聚合物作为生物医学材料的潜在应用。尽管已经开发出许多用于修饰生物医学设备/植入物的抗污或抗菌涂层,但很少有涂层能够同时满足抗菌和抗污活性的要求。在此,我们使用氩等离子体激活处理、光掩模技术和紫外光引发接枝聚合方法,在聚丙烯(PP)薄膜上构建具有抗污和抗菌性能的双功能微图案。通过红外(IR)光谱、扫描电子显微镜(SEM)和 X 射线光电子能谱(XPS)证实,在 PP 薄膜上制备了不同尺寸的 PMPC/PTM/PEGDA 微图案,其中 PMPC 是聚(2-甲基丙烯酰氧基乙基磷酸胆碱),用于提高亲水性和生物相容性,PTM 是聚(甲基丙烯酰氧基乙基三甲基氯化铵),用于提高抗菌活性,PEGDA 是聚(乙二醇二丙烯酸酯),用作交联剂。通过静态水接触角测试对图案化 PP-PMPC/PTM/PEGDA 的表面亲水性进行了表征。结果表明,尺寸为 5μm 的微图案 PP 表现出最佳的亲水性。对于图案化 PP-PMPC/PTM/PEGDA 的生物学检测,尺寸为 5μm 的微图案在抗血小板黏附性和抗菌活性方面表现最佳。我们期望这项工作能够为构建双功能生物医学材料提供一种新方法,以促进 PP 在生物医学领域的应用。