Suppr超能文献

基于基因表达谱分析的脑胶质瘤预后标志物鉴定。

Prognostic Markers Identification in Glioma by Gene Expression Profile Analysis.

机构信息

Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, China.

Department of Radiology, and China-Japan Union Hospital of Jilin University, Changchun, China.

出版信息

J Comput Biol. 2020 Jan;27(1):81-90. doi: 10.1089/cmb.2019.0217. Epub 2019 Aug 22.

Abstract

This study aimed to explore more gene markers associated with glioma or its prognosis. The glioma-related RNAseq data from the Gene Expression Omnibus database and The Cancer Genome Atlas dataset in UCSC Xena database were downloaded. There was a total of 971 tumor samples and 102 normal samples in the 2 datasets. The differentially expressed genes (DEGs) data between tumor and normal samples were analyzed, on which were then performed function and pathway enrichment analyses. Pearson correlation coefficient between DEGs was calculated to construct the coexpression network. Finally, prognostic genes were screened. A total of 634 upregulated and 769 downregulated DEGs were identified between tumor and control groups. These DEGs were significantly involved in 15 upregulated pathways, such as p53 signaling pathway, and 16 downregulated pathways, such as neuroactive ligand-receptor interaction, and cell adhesion molecules. In the coexpression network, pseudouridine synthase 7 (), EFR3 homolog B (), and neuronal cell adhesion molecule () had the top three highest degrees. Additionally, 17 prognostic genes were selected, such as thrombospondin-1 (), caspase-8 (), glutamate ionotropic receptor AMPA type subunit 2 (), , and receptor type I (). Pathways of p53 signaling pathway and neuroactive ligand-receptor interaction may play important roles in glioma progression. , , and may be potential biomarkers of glioma. , , , , and may serve as prognostic markers in glioma.

摘要

本研究旨在探索更多与神经胶质瘤或其预后相关的基因标志物。从基因表达综合数据库(Gene Expression Omnibus database)和 UCSC Xena 数据库的癌症基因组图谱(The Cancer Genome Atlas dataset)中下载了神经胶质瘤相关的 RNAseq 数据。这两个数据集共有 971 个肿瘤样本和 102 个正常样本。分析了肿瘤和正常样本之间差异表达基因(differentially expressed genes,DEGs)的数据,并对其进行了功能和通路富集分析。计算了 DEGs 之间的 Pearson 相关系数,以构建共表达网络。最后,筛选了预后基因。在肿瘤组和对照组之间共鉴定到 634 个上调和 769 个下调的 DEGs。这些 DEGs 显著参与了 15 个上调通路,如 p53 信号通路,以及 16 个下调通路,如神经活性配体-受体相互作用和细胞黏附分子。在共表达网络中,假尿嘧啶合成酶 7 ()、EFR3 同源物 B () 和神经元细胞黏附分子 () 的度数最高,分别为 27、26 和 25。此外,还选择了 17 个预后基因,如血小板反应蛋白-1 ()、半胱氨酸蛋白酶-8 ()、谷氨酸离子型受体 AMPA 型亚基 2 ()、、和 1 型受体 ()。p53 信号通路和神经活性配体-受体相互作用通路可能在神经胶质瘤的进展中发挥重要作用。、、和 可能是神经胶质瘤的潜在生物标志物。、、、、和 可能是神经胶质瘤的预后标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验