College of Materials Science and Engineering , Zhejiang University of Technology , Hangzhou 310014 , China.
Clinical Research Institute , Zhejiang Provincial People's Hospital , Hangzhou 310014 , China.
ACS Nano. 2019 Sep 24;13(9):10002-10014. doi: 10.1021/acsnano.9b01740. Epub 2019 Aug 26.
Reactive oxygen species (ROS) are crucial molecules in cancer therapy. Unfortunately, the therapeutic efficiency of ROS is unsatisfactory in clinic, primarily due to their rigorous production conditions. By taking advantage of the intrinsic acidity and overproduction of HO in the tumor environment, we have reported an ROS nanoreactor based on core-shell-structured iron carbide (FeC@FeO) nanoparticles (NPs) through the catalysis of the Fenton reaction. These NPs are able to release ferrous ions in acidic environments to disproportionate HO into OH radicals, which effectively inhibits the proliferation of tumor cells both and . The high magnetization of FeC@FeO NPs is favorable for both magnetic targeting and -weighted magnetic resonance imaging (MRI). Ionization of these NPs simultaneously decreases the signal and enhances the signal in MRI, and this / switching process provides the visualization of ferrous ions release and ROS generation for the supervision of tumor curing. These FeC@FeO NPs show great potential in endogenous environment-excited cancer therapy with high efficiency and tumor specificity and can be guided further by MRI.
活性氧(ROS)是癌症治疗中至关重要的分子。不幸的是,ROS 的治疗效率在临床上并不令人满意,主要是由于其严格的产生条件。我们利用肿瘤微环境中的固有酸度和过表达的 HO,通过 Fenton 反应的催化作用,报道了一种基于核壳结构碳化铁(FeC@FeO)纳米粒子(NPs)的 ROS 纳米反应器。这些 NPs 能够在酸性环境中释放亚铁离子,将 HO 歧化为 OH 自由基,有效抑制肿瘤细胞的增殖。FeC@FeO NPs 的高磁化率有利于磁性靶向和 T2 加权磁共振成像(MRI)。这些 NPs 的电离同时降低了 MRI 中的 T1 信号并增强了 T2 信号,这种 T1/T2 切换过程为监测肿瘤治疗提供了亚铁离子释放和 ROS 生成的可视化。这些 FeC@FeO NPs 具有高效和肿瘤特异性的内源性环境激发癌症治疗的巨大潜力,并可进一步通过 MRI 进行引导。