Suppr超能文献

超声降解双酚 S:溶解氧和过二硫酸盐的影响、氧化产物和急性毒性。

Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity.

机构信息

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.

出版信息

Water Res. 2019 Nov 15;165:114969. doi: 10.1016/j.watres.2019.114969. Epub 2019 Aug 9.

Abstract

In this paper, the kinetics of bisphenol S (BPS) degradation in the presence of peroxydisulfate (PDS) or dissolved oxygen (DO) in ultrasound (US) system were investigated. For PDS (US/PDS), increased PDS concentration result in faster BPS degradation, but the enhancement was not remarkable with multiplying PDS dosages. Therefore, heterogeneous PDS activation model based on a Langmuir-type adsorption mechanism was proposed to explain the trait of BPS abatement. The equilibrium constant of PDS (K) was calculated to be 2.91 × 10/μM, which was much lower than that of BPS, suggesting that PDS was hard to adsorb on the gas-liquid interface of the cavitation bubble following by activation. Besides, the formation of •OH and SO in US/PDS system was reinvestigated. The result showed that SO rather than •OH was the predominant radical, which was quite different from previous study. Dissolved oxygen largely improve the degradation of BPS in US system and •OH rather than O was proved to be the main reactive oxygen species (ROS). The improvement of •OH generation possibly caused by the reaction of DO with •H so that it cannot recombine with •OH. The transformation of the BPS in US system mainly included BPS radical polymerization, hydroxylation and hydrolysis. Frustratingly, the acute toxicity assay of Vibrio fischeri suggests that the degradation products of BPS are more toxic. These results will improve the understanding on the activation mechanisms of PDS and the role of dissolved oxygen play in US. Further investigations may need to explore other treatment ways of BPS and evaluate the acute toxicity of degradation products.

摘要

本文研究了超声(US)体系中过二硫酸盐(PDS)或溶解氧(DO)存在下双酚 S(BPS)的降解动力学。对于 PDS(US/PDS),增加 PDS 浓度会导致 BPS 降解更快,但增加 PDS 剂量的增强效果并不显著。因此,提出了一种基于 Langmuir 型吸附机制的非均相 PDS 活化模型来解释 BPS 去除的特性。计算得到 PDS 的平衡常数(K)为 2.91×10/μM,远低于 BPS 的平衡常数,表明 PDS 很难在空化泡的气液界面上吸附,随后进行活化。此外,重新研究了 US/PDS 体系中•OH 和 SO 的形成。结果表明,SO 而不是•OH 是主要的自由基,这与之前的研究有很大的不同。溶解氧大大提高了 US 体系中 BPS 的降解,并且证明•OH 而不是 O 是主要的活性氧物质(ROS)。•OH 生成的改善可能是由于 DO 与•H 的反应,从而使它们不能与•OH 重新结合。BPS 在 US 体系中的转化主要包括 BPS 自由基聚合、羟化和水解。令人沮丧的是,发光菌急性毒性试验表明,BPS 的降解产物毒性更大。这些结果将提高对 PDS 活化机制和溶解氧在 US 中作用的理解。可能需要进一步研究探索 BPS 的其他处理方法,并评估降解产物的急性毒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验