Suppr超能文献

通过可控电压给药和人工智能优化有机电合成。

Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence.

作者信息

Blanco Daniela E, Lee Bryan, Modestino Miguel A

机构信息

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201.

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201

出版信息

Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17683-17689. doi: 10.1073/pnas.1909985116. Epub 2019 Aug 21.

Abstract

Organic electrosynthesis can transform the chemical industry by introducing electricity-driven processes that are more energy efficient and that can be easily integrated with renewable energy sources. However, their deployment is severely hindered by the difficulties of controlling selectivity and achieving a large energy conversion efficiency at high current density due to the low solubility of organic reactants in practical electrolytes. This control can be improved by carefully balancing the mass transport processes and electrocatalytic reaction rates at the electrode diffusion layer through pulsed electrochemical methods. In this study, we explore these methods in the context of the electrosynthesis of adiponitrile (ADN), the largest organic electrochemical process in industry. Systematically exploring voltage pulses in the timescale between 5 and 150 ms led to a 20% increase in production of ADN and a 250% increase in relative selectivity with respect to the state-of-the-art constant voltage process. Moreover, combining this systematic experimental investigation with artificial intelligence (AI) tools allowed us to rapidly discover drastically improved electrosynthetic conditions, reaching improvements of 30 and 325% in ADN production rates and selectivity, respectively. This powerful AI-enhanced experimental approach represents a paradigm shift in the design of electrified chemical transformations, which can accelerate the deployment of more sustainable electrochemical manufacturing processes.

摘要

有机电合成可以通过引入更节能且易于与可再生能源整合的电驱动过程来变革化学工业。然而,由于有机反应物在实际电解质中的溶解度较低,控制选择性以及在高电流密度下实现高能量转换效率存在困难,严重阻碍了它们的应用。通过脉冲电化学方法仔细平衡电极扩散层处的传质过程和电催化反应速率,可以改善这种控制。在本研究中,我们在工业上最大的有机电化学过程——己二腈(ADN)电合成的背景下探索这些方法。系统地探索5至150毫秒时间尺度内的电压脉冲,使得ADN产量提高了20%,相对于最先进的恒压过程,相对选择性提高了250%。此外,将这种系统的实验研究与人工智能(AI)工具相结合,使我们能够迅速发现大幅改善的电合成条件,ADN产率和选择性分别提高了30%和325%。这种强大的人工智能增强实验方法代表了电化学生产转化设计的范式转变,能够加速更可持续的电化学制造过程的应用。

相似文献

2
Electrochemical Manufacturing Routes for Organic Chemical Commodities.电化学制造有机化工产品的途径。
Annu Rev Chem Biomol Eng. 2023 Jun 8;14:85-108. doi: 10.1146/annurev-chembioeng-101121-090840. Epub 2023 Mar 17.
4
Electron Transfer in Microemulsion-Based Electrolytes.基于微乳液的电解质中的电子转移
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40213-40219. doi: 10.1021/acsami.0c07028. Epub 2020 Aug 26.

引用本文的文献

1
3
Effect of Alternating Polarity in Electrochemical Olefin Hydrocarboxylation.交变极性在电化学烯烃氢羧化反应中的作用
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202424865. doi: 10.1002/anie.202424865. Epub 2025 Apr 14.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验