Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; email:
Annu Rev Chem Biomol Eng. 2023 Jun 8;14:85-108. doi: 10.1146/annurev-chembioeng-101121-090840. Epub 2023 Mar 17.
Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.
电化学合成有机化工产品为传统热化学制造提供了替代方案,并使可再生电能得以直接用于减少化工行业的温室气体排放。我们讨论了使用丰富的碳原料生产最大的石化前体和基本有机化工产品的电化学合成方法:低碳烯烃、烯烃氧化衍生物、芳烃和甲醇。首先,我们在考虑反应热力学、可用原料和竞争热化学过程的情况下,确定了每种商品电化学生产的可行路线。接下来,我们总结了成功的催化和反应工程方法,以克服阻碍电化学路线以高生产率、选择性、稳定性和能量转换效率运行的技术挑战。最后,我们对实现主要有机化工产品大规模电化学制造必须实施的策略进行了展望。