College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
Biol Reprod. 2020 Feb 12;102(1):116-132. doi: 10.1093/biolre/ioz162.
As the follicle develops, the thickening of the granulosa compartment leads to progressively deficient supply of oxygen in granulosa cells (GCs) due to the growing distances from the follicular vessels. These conditions are believed to cause hypoxia in GCs during folliculogenesis. Upon hypoxic conditions, several types of mammalian cells have been reported to undergo cell cycle arrest. However, it remains unclear whether hypoxia exerts any impact on cell cycle progression of GCs. On the other hand, although the GCs may live in a hypoxic environment, their mitotic capability appears to be unaffected in growing follicles. It thus raises the question whether there are certain intraovarian factors that might overcome the inhibitory effects of hypoxia. The present study provides the first evidence suggesting that cobalt chloride (CoCl2)-mimicked hypoxia prevented G1-to-S cell cycle progression in porcine GCs. In addition, we demonstrated that the inhibitory effects of CoCl2 on GCs cell cycle are mediated through hypoxia-inducible factor-1 alpha/FOXO1/Cdkn1b pathway. Moreover, we identified insulin-like growth factor-I (IGF-I) as an intrafollicular factor required for cell cycle recovery by binding to IGF-I receptor in GCs suffering CoCl2 stimulation. Further investigations confirmed a role of IGF-I in preserving G1/S progression of CoCl2-treated GCs via activating the cyclin E/cyclin-dependent kinase2 complex through the phoshatidylinositol-3 kinase/protein kinase B (AKT)/FOXO1/Cdkn1b axis. Although the present findings were based on a hypoxia mimicking model by using CoCl2, our study might shed new light on the regulatory mechanism of GCs cell cycle upon hypoxic stimulation.
随着卵泡的发育,颗粒细胞(GCs)层的增厚导致其与卵泡血管的距离越来越远,从而导致 GCs 中的氧供应逐渐不足。这些情况被认为会在卵泡发生过程中导致 GCs 缺氧。在缺氧条件下,已经有报道称几种哺乳动物细胞会经历细胞周期停滞。然而,目前尚不清楚缺氧是否会对 GCs 的细胞周期进程产生影响。另一方面,尽管 GCs 可能生活在缺氧环境中,但它们在生长的卵泡中似乎没有受到影响。因此,人们不禁要问,是否存在某些卵巢内因素可以克服缺氧的抑制作用。本研究首次提供证据表明,氯化钴(CoCl2)模拟的缺氧可阻止猪 GCs 的 G1 期至 S 期细胞周期进程。此外,我们证明 CoCl2 对 GCs 细胞周期的抑制作用是通过缺氧诱导因子-1α/FOXO1/Cdkn1b 途径介导的。此外,我们发现胰岛素样生长因子-I(IGF-I)是一种卵泡内因子,通过与 GCs 中 IGF-I 受体结合,在 CoCl2 刺激下的 GCs 中恢复细胞周期,从而克服了缺氧的抑制作用。进一步的研究证实,IGF-I 通过激活细胞周期蛋白 E/细胞周期蛋白依赖性激酶 2 复合物,通过磷脂酰肌醇-3 激酶/蛋白激酶 B(AKT)/FOXO1/Cdkn1b 轴,在保存 CoCl2 处理的 GCs 的 G1/S 进展中发挥作用。虽然本研究结果是基于使用 CoCl2 的模拟缺氧模型得出的,但我们的研究可能为缺氧刺激下 GCs 细胞周期的调节机制提供新的见解。