Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS Comput Biol. 2019 Aug 22;15(8):e1006661. doi: 10.1371/journal.pcbi.1006661. eCollection 2019 Aug.
Multiple cellular organelles tightly orchestrate intracellular calcium (Ca2+) dynamics to regulate cellular activities and maintain homeostasis. The interplay between the endoplasmic reticulum (ER), a major store of intracellular Ca2+, and mitochondria, an important source of adenosine triphosphate (ATP), has been the subject of much research, as their dysfunction has been linked with metabolic diseases. Interestingly, throughout the cell's cytosolic domain, these two organelles share common microdomains called mitochondria-associated ER membranes (MAMs), where their membranes are in close apposition. The role of MAMs is critical for intracellular Ca2+ dynamics as they provide hubs for direct Ca2+ exchange between the organelles. A recent experimental study reported correlation between obesity and MAM formation in mouse liver cells, and obesity-related cellular changes that are closely associated with the regulation of Ca2+ dynamics. We constructed a mathematical model to study the effects of MAM Ca2+ dynamics on global Ca2+ activities. Through a series of model simulations, we investigated cellular mechanisms underlying the altered Ca2+ dynamics in the cells under obesity. We predict that, as the dosage of stimulus gradually increases, liver cells from obese mice will reach the state of saturated cytosolic Ca2+ concentration at a lower stimulus concentration, compared to cells from healthy mice.
多个细胞细胞器紧密协调细胞内钙 (Ca2+) 动力学,以调节细胞活动并维持内稳态。内质网 (ER) 是细胞内 Ca2+ 的主要储存库,线粒体是三磷酸腺苷 (ATP) 的重要来源,它们之间的相互作用一直是研究的主题,因为它们的功能障碍与代谢疾病有关。有趣的是,在整个细胞的胞质域中,这两个细胞器共享称为线粒体相关内质网膜 (MAMs) 的共同微域,它们的膜紧密相邻。MAMs 的作用对于细胞内 Ca2+ 动力学至关重要,因为它们提供了细胞器之间直接 Ca2+ 交换的枢纽。最近的一项实验研究报告了肥胖与小鼠肝细胞中 MAM 形成之间的相关性,以及与 Ca2+ 动力学调节密切相关的肥胖相关细胞变化。我们构建了一个数学模型来研究 MAM Ca2+ 动力学对全局 Ca2+ 活性的影响。通过一系列模型模拟,我们研究了肥胖细胞中 Ca2+ 动力学改变的细胞机制。我们预测,随着刺激剂量逐渐增加,与来自健康小鼠的细胞相比,肥胖小鼠的肝细胞在较低的刺激浓度下将达到饱和胞质 Ca2+ 浓度的状态。