Topaz Maxim, Murga Ludmila, Grossman Chagai, Daliyot Daniella, Jacobson Shlomit, Rozendorn Noa, Zimlichman Eyal, Furie Nadav
School of Nursing & Data Science Institute, Columbia University, New York City, NY, USA.
Visiting Nurse Service of New York, New York City, NY, USA.
Stud Health Technol Inform. 2019 Aug 21;264:393-397. doi: 10.3233/SHTI190250.
NimbleMiner is a word embedding-based, language-agnostic natural language processing system for clinical text classification. Previously, NimbleMiner was applied in English and this study applied NimbleMiner on a large sample of inpatient clinical notes in Hebrew to identify instances of diabetes mellitus. The study data included 521,278 clinical notes (one admission and one discharge note per patient) for 268,664 hospital admissions to medical-surgical units of a large hospital in Israel. NimbleMiner achieved overall good performance (F-score =.94) when tested on a gold standard human annotated dataset of 800 clinical notes. We found 15% more patients with diabetes mentioned in the clinical notes compared with diagnoses data. Our findings about underreporting of diabetes in the coded diagnoses data highlight the urgent need for tools and algorithms that will help busy providers identify a range of useful information, like having a diabetes.
NimbleMiner是一个基于词嵌入、与语言无关的用于临床文本分类的自然语言处理系统。此前,NimbleMiner已应用于英语,本研究将NimbleMiner应用于大量希伯来语住院临床记录样本,以识别糖尿病病例。研究数据包括以色列一家大型医院内科-外科病房268,664例住院患者的521,278份临床记录(每位患者一份入院记录和一份出院记录)。在一个由800份临床记录组成的金标准人工标注数据集上进行测试时,NimbleMiner取得了总体良好的性能(F值=0.94)。我们发现,与诊断数据相比,临床记录中提及的糖尿病患者多15%。我们关于编码诊断数据中糖尿病报告不足的发现凸显了迫切需要工具和算法来帮助忙碌的医疗服务提供者识别一系列有用信息,比如患有糖尿病。