Suppr超能文献

利用自然语言处理技术识别临床记录中的症状信息。

Identifying Symptom Information in Clinical Notes Using Natural Language Processing.

出版信息

Nurs Res. 2021;70(3):173-183. doi: 10.1097/NNR.0000000000000488.

Abstract

BACKGROUND

Symptoms are a core concept of nursing interest. Large-scale secondary data reuse of notes in electronic health records (EHRs) has the potential to increase the quantity and quality of symptom research. However, the symptom language used in clinical notes is complex. A need exists for methods designed specifically to identify and study symptom information from EHR notes.

OBJECTIVES

We aim to describe a method that combines standardized vocabularies, clinical expertise, and natural language processing to generate comprehensive symptom vocabularies and identify symptom information in EHR notes. We piloted this method with five diverse symptom concepts: constipation, depressed mood, disturbed sleep, fatigue, and palpitations.

METHODS

First, we obtained synonym lists for each pilot symptom concept from the Unified Medical Language System. Then, we used two large bodies of text (clinical notes from Columbia University Irving Medical Center and PubMed abstracts containing Medical Subject Headings or key words related to the pilot symptoms) to further expand our initial vocabulary of synonyms for each pilot symptom concept. We used NimbleMiner, an open-source natural language processing tool, to accomplish these tasks and evaluated NimbleMiner symptom identification performance by comparison to a manually annotated set of nurse- and physician-authored common EHR note types.

RESULTS

Compared to the baseline Unified Medical Language System synonym lists, we identified up to 11 times more additional synonym words or expressions, including abbreviations, misspellings, and unique multiword combinations, for each symptom concept. Natural language processing system symptom identification performance was excellent.

DISCUSSION

Using our comprehensive symptom vocabularies and NimbleMiner to label symptoms in clinical notes produced excellent performance metrics. The ability to extract symptom information from EHR notes in an accurate and scalable manner has the potential to greatly facilitate symptom science research.

摘要

背景

症状是护理关注的核心概念。电子健康记录(EHR)中注释的大规模二次数据重用有可能增加症状研究的数量和质量。然而,临床记录中使用的症状语言非常复杂。需要专门设计方法来识别和研究 EHR 记录中的症状信息。

目的

我们旨在描述一种结合标准化词汇、临床专业知识和自然语言处理的方法,以生成全面的症状词汇并识别 EHR 记录中的症状信息。我们使用五个不同的症状概念(便秘、情绪低落、睡眠障碍、疲劳和心悸)对该方法进行了试点。

方法

首先,我们从统一医学语言系统(Unified Medical Language System)中为每个试点症状概念获取同义词列表。然后,我们使用两个大型文本集(哥伦比亚大学欧文医学中心的临床记录和包含试点症状相关的医学主题词或关键词的 PubMed 摘要)进一步扩展每个试点症状概念的初始同义词词汇。我们使用 NimbleMiner(一种开源自然语言处理工具)来完成这些任务,并通过与由护士和医生撰写的常见 EHR 记录类型的手动注释集进行比较来评估 NimbleMiner 的症状识别性能。

结果

与基线统一医学语言系统同义词列表相比,我们为每个症状概念确定了多达 11 倍的额外同义词词或表达式,包括缩写、拼写错误和独特的多词组合。自然语言处理系统的症状识别性能非常出色。

讨论

使用我们全面的症状词汇和 NimbleMiner 来标记临床记录中的症状产生了出色的性能指标。以准确和可扩展的方式从 EHR 记录中提取症状信息的能力有可能极大地促进症状科学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b4e/9109773/88e6b9da6ace/nihms-1801703-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

7
Clinical information extraction applications: A literature review.临床信息提取应用:文献综述。
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验