Temperton Robert H, Skowron Stephen T, Handrup Karsten, Gibson Andrew J, Nicolaou Alessandro, Jaouen Nicolas, Besley Elena, O'Shea James N
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
J Chem Phys. 2019 Aug 21;151(7):074701. doi: 10.1063/1.5114692.
N 1s Resonant Inelastic X-ray Scattering (RIXS) was used to probe the molecular electronic structure of the ruthenium photosensitizer complex cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II), known as "N3." In order to interpret these data, crystalline powder samples of the bipyridine-dicarboxylic acid ligand ("bi-isonicotinic acid") and the single ring analog "isonicotinic acid" were studied separately using the same method. Clear evidence for intermolecular hydrogen bonding is observed for each of these crystalline powders, along with clear vibronic coupling features. For bi-isonicotinic acid, these results are compared to those of a physisorbed multilayer, where no hydrogen bonding is observed. The RIXS of the "N3" dye, again prepared as a bulk powder sample, is interpreted in terms of the orbital contributions of the bi-isonicotinic acid and thiocyanate ligands by considering the two different nitrogen species. This allows direct comparison with the isolated ligand molecules where we highlight the impact of the central Ru atom on the electronic structure of the ligand. Further interpretation is provided through complementary resonant photoemission spectroscopy and density functional theory calculations. This combination of techniques allows us to confirm the localization and relative coupling of the frontier orbitals and associated vibrational losses.
利用N 1s共振非弹性X射线散射(RIXS)来探测钌光敏剂配合物顺式双(异硫氰酸根)双(2,2'-联吡啶-4,4'-二羧酸根)钌(II)(即“N3”)的分子电子结构。为了解释这些数据,使用相同方法分别研究了联吡啶二羧酸配体(“联异烟酸”)和单环类似物“异烟酸”的结晶粉末样品。对于这些结晶粉末中的每一种,都观察到了分子间氢键的明确证据以及清晰的振动耦合特征。对于联异烟酸,将这些结果与未观察到氢键的物理吸附多层膜的结果进行了比较。同样制备成块状粉末样品的“N3”染料的RIXS,通过考虑两种不同的氮物种,根据联异烟酸和硫氰酸根配体的轨道贡献来进行解释。这使得我们能够直接与孤立的配体分子进行比较,在此我们突出了中心Ru原子对配体电子结构的影响。通过互补的共振光发射光谱和密度泛函理论计算提供了进一步的解释。这种技术组合使我们能够确认前沿轨道的定位和相对耦合以及相关的振动损失。