Suppr超能文献

少突胶质细胞前体细胞中中间神经元基因周围的染色质环境及其中间神经元重编程潜力

The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming.

作者信息

Boshans Linda L, Factor Daniel C, Singh Vijender, Liu Jia, Zhao Chuntao, Mandoiu Ion, Lu Q Richard, Casaccia Patrizia, Tesar Paul J, Nishiyama Akiko

机构信息

Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.

Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States.

出版信息

Front Neurosci. 2019 Aug 8;13:829. doi: 10.3389/fnins.2019.00829. eCollection 2019.

Abstract

Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural progenitor cells in the embryonic ganglionic eminences that also generate inhibitory neurons. They are ubiquitously distributed in the central nervous system, remain proliferative through life, and generate oligodendrocytes in both gray and white matter. OPCs exhibit some lineage plasticity, and attempts have been made to reprogram them into neurons, with varying degrees of success. However, little is known about how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and whether OPCs have a unique chromatin environment around neuronal genes that might contribute to their lineage plasticity. Our bioinformatic analysis of histone posttranslational modifications at interneuron genes in OPCs revealed that OPCs had significantly fewer bivalent and repressive histone marks at interneuron genes compared to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of active histone modifications at bivalently marked interneuron genes than other cell types, and this was correlated with higher expression levels of these genes in OPCs. Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other cell types lacked the histone posttranslational modifications examined. These genes had a moderately high level of expression, suggesting that the "no mark" interneuron genes could be in a transcriptionally "poised" or "transitional" state. Thus, our findings suggest that OPCs have a unique histone code at their interneuron genes that may obviate the need for erasure of repressive marks during their fate switch to inhibitory neurons.

摘要

少突胶质前体细胞(OPCs),也被称为NG2神经胶质细胞,起源于胚胎神经节隆起中的神经祖细胞,这些神经祖细胞也能产生抑制性神经元。它们广泛分布于中枢神经系统,终生保持增殖能力,并在灰质和白质中生成少突胶质细胞。OPCs表现出一定程度的谱系可塑性,人们已尝试将它们重编程为神经元,取得了不同程度的成功。然而,关于表观遗传机制如何影响OPCs进行命运转换的能力,以及OPCs在神经元基因周围是否具有独特的染色质环境从而可能有助于其谱系可塑性,我们知之甚少。我们对OPCs中中间神经元基因的组蛋白翻译后修饰进行的生物信息学分析表明,与星形胶质细胞或成纤维细胞相比,OPCs在中间神经元基因处的二价和抑制性组蛋白标记明显更少。相反,与其他细胞类型相比,OPCs在二价标记的中间神经元基因处有更高程度的活性组蛋白修饰沉积,这与这些基因在OPCs中的较高表达水平相关。此外,与其他细胞类型相比,OPCs中中间神经元基因缺乏所检测的组蛋白翻译后修饰的比例显著更高。这些基因具有中等偏高的表达水平,表明“无标记”的中间神经元基因可能处于转录“准备就绪”或“过渡”状态。因此,我们的研究结果表明,OPCs在其中间神经元基因处具有独特的组蛋白编码,这可能使得它们在向抑制性神经元进行命运转换时无需消除抑制性标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b400/6694778/c371891d0f2e/fnins-13-00829-g001.jpg

相似文献

4
Early cortical oligodendrocyte precursor cells are transcriptionally distinct and lack synaptic connections.
Glia. 2023 Sep;71(9):2210-2233. doi: 10.1002/glia.24388. Epub 2023 May 25.
5
Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion.
J Neurosci. 2018 Feb 28;38(9):2359-2371. doi: 10.1523/JNEUROSCI.0712-17.2018. Epub 2018 Jan 30.
6
Sequential specification of oligodendrocyte lineage cells by distinct levels of Hedgehog and Notch signaling.
Dev Biol. 2018 Dec 15;444(2):93-106. doi: 10.1016/j.ydbio.2018.10.004. Epub 2018 Oct 19.
8
Early embryonic NG2 glia are exclusively gliogenic and do not generate neurons in the brain.
Glia. 2019 Jun;67(6):1094-1103. doi: 10.1002/glia.23590. Epub 2019 Feb 6.
9
Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease.
Front Cell Neurosci. 2021 Apr 29;15:673132. doi: 10.3389/fncel.2021.673132. eCollection 2021.

引用本文的文献

2
Histone H4 acetylation differentially modulates proliferation in adult oligodendrocyte progenitors.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202308064. Epub 2024 Aug 12.
3
The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina.
Cell Rep. 2023 Aug 29;42(8):112848. doi: 10.1016/j.celrep.2023.112848. Epub 2023 Jul 28.
4
The epigenetic landscape of oligodendrocyte lineage cells.
Ann N Y Acad Sci. 2023 Apr;1522(1):24-41. doi: 10.1111/nyas.14959. Epub 2023 Feb 5.
6
Life-long oligodendrocyte development and plasticity.
Semin Cell Dev Biol. 2021 Aug;116:25-37. doi: 10.1016/j.semcdb.2021.02.004. Epub 2021 Mar 16.
8
The effects of developmental and current niches on oligodendrocyte precursor dynamics and fate.
Neurosci Lett. 2020 Jan 10;715:134593. doi: 10.1016/j.neulet.2019.134593. Epub 2019 Oct 31.

本文引用的文献

1
Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis.
Nat Metab. 2019 Jan;1(1):147-157. doi: 10.1038/s42255-018-0008-5. Epub 2019 Jan 7.
2
Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation.
Cell. 2019 Jan 24;176(3):581-596.e18. doi: 10.1016/j.cell.2018.12.012. Epub 2019 Jan 17.
3
Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes.
Cell Stem Cell. 2018 Oct 4;23(4):557-571.e8. doi: 10.1016/j.stem.2018.09.008.
4
Molecular and Genetic Evidence for the PDGFRα-Independent Population of Oligodendrocyte Progenitor Cells in the Developing Mouse Brain.
J Neurosci. 2018 Oct 31;38(44):9505-9513. doi: 10.1523/JNEUROSCI.1510-18.2018. Epub 2018 Sep 21.
5
Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8246-E8255. doi: 10.1073/pnas.1802620115. Epub 2018 Aug 14.
7
Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development.
Cereb Cortex. 2019 Jun 1;29(6):2653-2667. doi: 10.1093/cercor/bhy133.
8
The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog.
J Neurosci. 2018 Jun 6;38(23):5237-5250. doi: 10.1523/JNEUROSCI.3392-17.2018. Epub 2018 May 8.
9
Age-Dependent Decline in Fate Switch from NG2 Cells to Astrocytes After Olig2 Deletion.
J Neurosci. 2018 Feb 28;38(9):2359-2371. doi: 10.1523/JNEUROSCI.0712-17.2018. Epub 2018 Jan 30.
10
Dlx1 and Dlx2 Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis.
Cereb Cortex. 2018 Nov 1;28(11):3797-3815. doi: 10.1093/cercor/bhx241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验