Suppr超能文献

基于RR间期对阵发性心房颤动复发的预测

[Prediction of recurrence of paroxysmal atrial fibrillation based on RR interval].

作者信息

Lan Tianjie, Yang Cuiwei

机构信息

Department of Electronic Engineering, Fudan University, Shanghai 200433, P.R. China.

Department of Electronic Engineering, Fudan University, Shanghai 200433, P.R. China;Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200433, P.R. China;Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, P.R.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Aug 25;36(4):521-530. doi: 10.7507/1001-5515.201808019.

Abstract

Atrial fibrillation (AF) is one of the most common arrhythmias, which does great harm to patients. Effective methods were urgently required to prevent the recurrence of AF. Four methods were used to analyze RR sequence in this paper, and differences between Pre-AF (preceding an episode of AF) and Normal period (far away from episodes of AF) were analyzed to find discriminative criterion. These methods are: power spectral analysis, approximate entropy (ApEn) and sample entropy (SpEn) analysis, recurrence analysis and time series symbolization. The RR sequence data used in this research were downloaded from the Paroxysmal Atrial Fibrillation Prediction Database. Supporting vector machine (SVM) classification was used to evaluate the methods by calculating sensitivity, specificity and accuracy rate. The results showed that the comprehensive utilization of recurrence analysis parameters reached the highest accuracy rate (95%); power spectrum analysis took second place (90%); while the results of entropy analyses and time sequence symbolization were not satisfactory, whose accuracy were both only 70%. In conclusion, the recurrence analysis and power spectrum could be adopted to evaluate the atrial chaotic state effectively, thus having certain reference value for prediction of AF recurrence.

摘要

心房颤动(AF)是最常见的心律失常之一,对患者危害极大。迫切需要有效的方法来预防房颤复发。本文采用四种方法分析RR序列,并分析房颤发作前(Pre-AF)与正常时期(远离房颤发作)之间的差异,以寻找判别标准。这些方法包括:功率谱分析、近似熵(ApEn)和样本熵(SpEn)分析、递归分析和时间序列符号化。本研究中使用的RR序列数据从阵发性心房颤动预测数据库下载。采用支持向量机(SVM)分类法,通过计算灵敏度、特异性和准确率来评估这些方法。结果表明,综合利用递归分析参数的准确率最高(95%);功率谱分析位居第二(90%);而熵分析和时间序列符号化的结果并不理想,其准确率均仅为70%。综上所述,递归分析和功率谱可有效评估心房混沌状态,对预测房颤复发具有一定参考价值。

相似文献

1
[Prediction of recurrence of paroxysmal atrial fibrillation based on RR interval].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Aug 25;36(4):521-530. doi: 10.7507/1001-5515.201808019.
3
Heart rate variability measures during sinus rhythm predict cycle length entropy during atrial fibrillation.
J Cardiovasc Electrophysiol. 2008 Oct;19(10):1031-6. doi: 10.1111/j.1540-8167.2008.01174.x. Epub 2008 May 2.
6
CHADS2 and CHA2DS2-VASc scores as predictors of left atrial ablation outcomes for paroxysmal atrial fibrillation.
Europace. 2014 Feb;16(2):202-7. doi: 10.1093/europace/eut210. Epub 2013 Jun 28.
7
Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine.
Comput Biol Med. 2015 May;60:132-42. doi: 10.1016/j.compbiomed.2015.03.005. Epub 2015 Mar 14.
8
Entropy measurements in paroxysmal and persistent atrial fibrillation.
Physiol Meas. 2010 Jul;31(7):1011-20. doi: 10.1088/0967-3334/31/7/010. Epub 2010 Jun 24.

引用本文的文献

1
[Prediction method of paroxysmal atrial fibrillation based on multimodal feature fusion].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Feb 25;42(1):42-48. doi: 10.7507/1001-5515.202403039.
2
Accurate detection of atrial fibrillation events with R-R intervals from ECG signals.
PLoS One. 2022 Aug 4;17(8):e0271596. doi: 10.1371/journal.pone.0271596. eCollection 2022.

本文引用的文献

1
Linear and nonlinear parameters of heart rate variability in ischemic stroke patients.
Neurol Neurochir Pol. 2018 Mar;52(2):194-206. doi: 10.1016/j.pjnns.2017.10.002. Epub 2017 Oct 11.
4
Approximate entropy (ApEn) as a complexity measure.
Chaos. 1995 Mar;5(1):110-117. doi: 10.1063/1.166092.
5
Recurrence-plot-based measures of complexity and their application to heart-rate-variability data.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):026702. doi: 10.1103/PhysRevE.66.026702. Epub 2002 Aug 6.
7
Symbolic approach for measuring temporal "irreversibility".
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt A):1912-21. doi: 10.1103/physreve.62.1912.
8
Physiological time-series analysis using approximate entropy and sample entropy.
Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49. doi: 10.1152/ajpheart.2000.278.6.H2039.
9
Symbol sequence statistics in noisy chaotic signal reconstruction.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):3871-3889. doi: 10.1103/physreve.51.3871.
10
Determining embedding dimension for phase-space reconstruction using a geometrical construction.
Phys Rev A. 1992 Mar 15;45(6):3403-3411. doi: 10.1103/physreva.45.3403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验