Key Laboratory of Biomedical Information Engineering of Ministry of Education and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
School of Electronic Engineering, Xidian University, Xi'an, China.
PLoS One. 2022 Aug 4;17(8):e0271596. doi: 10.1371/journal.pone.0271596. eCollection 2022.
Atrial fibrillation (AF) is a typical category of arrhythmia. Clinical diagnosis of AF is based on the detection of abnormal R-R intervals (RRIs) with an electrocardiogram (ECG). Previous studies considered this detection problem as a classification problem and focused on extracting a number of features. In this study we demonstrate that instead of using any specific numerical characteristic as the input feature, the probability density of RRIs from ECG conserves comprehensive statistical information; hence, is a natural and efficient input feature for AF detection. Incorporated with a support vector machine as the classifier, results on the MIT-BIH database indicates that the proposed method is a simple and accurate approach for AF detection in terms of accuracy, sensitivity, and specificity.
心房颤动(AF)是一种典型的心律失常。AF 的临床诊断基于心电图(ECG)检测到的异常 R-R 间期(RRIs)。以前的研究将这个检测问题视为分类问题,并专注于提取一些特征。在这项研究中,我们证明了与其使用任何特定的数值特征作为输入特征,不如使用心电图的 R-R 间期概率密度来保留全面的统计信息;因此,它是一种用于 AF 检测的自然而有效的输入特征。结合支持向量机作为分类器,在 MIT-BIH 数据库上的结果表明,该方法在准确性、敏感性和特异性方面是一种简单而准确的 AF 检测方法。