Suppr超能文献

利用心电图信号的 R-R 间期准确检测心房颤动事件。

Accurate detection of atrial fibrillation events with R-R intervals from ECG signals.

机构信息

Key Laboratory of Biomedical Information Engineering of Ministry of Education and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

School of Electronic Engineering, Xidian University, Xi'an, China.

出版信息

PLoS One. 2022 Aug 4;17(8):e0271596. doi: 10.1371/journal.pone.0271596. eCollection 2022.

Abstract

Atrial fibrillation (AF) is a typical category of arrhythmia. Clinical diagnosis of AF is based on the detection of abnormal R-R intervals (RRIs) with an electrocardiogram (ECG). Previous studies considered this detection problem as a classification problem and focused on extracting a number of features. In this study we demonstrate that instead of using any specific numerical characteristic as the input feature, the probability density of RRIs from ECG conserves comprehensive statistical information; hence, is a natural and efficient input feature for AF detection. Incorporated with a support vector machine as the classifier, results on the MIT-BIH database indicates that the proposed method is a simple and accurate approach for AF detection in terms of accuracy, sensitivity, and specificity.

摘要

心房颤动(AF)是一种典型的心律失常。AF 的临床诊断基于心电图(ECG)检测到的异常 R-R 间期(RRIs)。以前的研究将这个检测问题视为分类问题,并专注于提取一些特征。在这项研究中,我们证明了与其使用任何特定的数值特征作为输入特征,不如使用心电图的 R-R 间期概率密度来保留全面的统计信息;因此,它是一种用于 AF 检测的自然而有效的输入特征。结合支持向量机作为分类器,在 MIT-BIH 数据库上的结果表明,该方法在准确性、敏感性和特异性方面是一种简单而准确的 AF 检测方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验