Suppr超能文献

利用人工智能方法对心率变异性动力学进行复杂性和频谱分析以对阵发性心房颤动进行远程预测。

Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods.

作者信息

Chesnokov Yuriy V

机构信息

Faculty of Computer and Information Science, Kuban State University, Stavropolskaya 149, Krasnodar, Russia.

出版信息

Artif Intell Med. 2008 Jun;43(2):151-65. doi: 10.1016/j.artmed.2008.03.009. Epub 2008 May 1.

Abstract

OBJECTIVE

Paroxysmal atrial fibrillation (PAF) is a serious arrhythmia associated with morbidity and mortality. We explore the possibility of distant prediction of PAF by analyzing changes in heart rate variability (HRV) dynamics of non-PAF rhythms immediately before PAF event. We use that model for distant prognosis of PAF onset with artificial intelligence methods.

METHODS AND MATERIALS

We analyzed 30-min non-PAF HRV records from 51 subjects immediately before PAF onset and at least 45min distant from any PAF event. We used spectral and complexity analysis with sample (SmEn) and approximate (ApEn) entropies and their multiscale versions on extracted HRV data. We used that features to train the artificial neural networks (ANNs) and support vector machine (SVM) classifiers to differentiate the subjects. The trained classifiers were further tested for distant PAF event prognosis on 16 subjects from independent database on non-PAF rhythm lasting from 60 to 320 min before PAF onset classifying the 30-min segments as distant or leading to PAF.

RESULTS

We found statistically significant increase in 30-min non-PAF HRV recordings from 51 subjects in the VLF, LF, HF bands and total power (p<0.0001) before PAF event compared to PAF distant ones. The SmEn and ApEn analysis provided significant decrease in complexity (p<0.0001 and p<0.001) before PAF onset. For training ANN and SVM classifiers the data from 51 subjects were randomly split to training, validation and testing. ANN provided better results in terms of sensitivity (Se), specificity (Sp) and positive predictivity (Pp) compared to SVM which became biased towards positive case. The validation results of the ANN classifier we achieved: Se 76%, Sp 93%, Pp 94%. Testing ANN and SVM classifiers on 16 subjects with non-PAF HRV data preceding PAF events we obtained distant prediction of PAF onset with SVM classifier in 10 subjects (58+/-18 min in advance). ANN classifier provided distant prediction of PAF event in 13 subjects (62+/-21 min in advance).

CONCLUSION

From the results of distant PAF prediction we conclude that ANN and SVM classifiers learned the changes in the HRV dynamics immediately before PAF event and successfully identified them during distant PAF prognosis on independent database. This confirms the reported in the literature results that corresponding changes in the HRV data occur about 60 min before PAF onset and proves the possibility of distant PAF prediction with ANN and SVM methods.

摘要

目的

阵发性心房颤动(PAF)是一种与发病率和死亡率相关的严重心律失常。我们通过分析PAF事件发生前非PAF心律的心率变异性(HRV)动态变化,探索对PAF进行远期预测的可能性。我们使用人工智能方法将该模型用于PAF发作的远期预后评估。

方法和材料

我们分析了51名受试者在PAF发作前即刻以及距任何PAF事件至少45分钟的30分钟非PAF HRV记录。我们对提取的HRV数据使用了频谱分析和复杂度分析,包括样本熵(SmEn)和近似熵(ApEn)及其多尺度版本。我们利用这些特征训练人工神经网络(ANN)和支持向量机(SVM)分类器以区分受试者。对来自独立数据库的16名受试者进行了进一步测试,这些受试者在PAF发作前60至320分钟有非PAF心律,将30分钟的片段分类为远期或导致PAF,以评估训练后的分类器对PAF事件的远期预后。

结果

我们发现,与远期PAF记录相比,51名受试者在PAF事件发生前的30分钟非PAF HRV记录中,极低频(VLF)、低频(LF)、高频(HF)频段及总功率均有统计学显著增加(p<0.0001)。SmEn和ApEn分析显示,PAF发作前复杂度显著降低(p<0.0001和p<0.001)。为训练ANN和SVM分类器,将51名受试者的数据随机分为训练集、验证集和测试集。与偏向阳性病例的SVM相比,ANN在敏感性(Se)、特异性(Sp)和阳性预测值(Pp)方面表现更好。我们获得的ANN分类器验证结果为:Se 76%,Sp 93%,Pp 94%。对16名在PAF事件前有非PAF HRV数据的受试者测试ANN和SVM分类器,我们用SVM分类器对10名受试者(提前58±18分钟)实现了PAF发作的远期预测。ANN分类器对13名受试者(提前62±21分钟)实现了PAF事件的远期预测。

结论

从PAF远期预测结果来看,我们得出结论,ANN和SVM分类器了解了PAF事件发生前HRV动态的变化,并在独立数据库的PAF远期预后过程中成功识别出这些变化。这证实了文献报道的结果,即HRV数据的相应变化在PAF发作前约60分钟出现,并证明了用ANN和SVM方法进行PAF远期预测的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验